Session 2

Binary logistic model

Session 2

Binary Logistic Model

2.1 Dichotomisation of ordinal data to a binary response
2.2 Binary Methods
2.3 Logistic analysis using SAS Proc Logistic
2.4 Logistic analysis using SAS Proc Genmod
2.5 Why use logistic analyses?
2.6 Further example using SAS Proc Logistic

2.1 Dichotomisation of ordinal data to a binary response

Binary data are a special case of Ordinal data when there are just two response categories
e.g.

No Pain
No Bleeding
No Ulcer
Pain
Bleeding
Ulcer

However, even if we have multiple response categories, e.g.

no pain	mild pain	moderate pain	severe pain

these categories can be reduced to a binary response:-

no, mild, moderate pain	severe pain

no and mild pain	moderate and severe pain

Start by analysing binary data - as all further methods are developed from the binary response

2.2 Binary methods Example 2: Outcome following a head injury

Glasgow Outcome Scale Count (\%)	Treatment				Total	
	Control		Treated			
	42	(25)	71	(40)	113	(33)
2: Moderate disability	27	(16)	30	(17)	57	(17)
3: Severe disability	33	(20)	27	(15)	60	(18)
4: \quad Vegetative state/Dead	63	(38)	48	(27)	111	(33)
Total	$165(100)$	$176(100)$	341	(100)		

Objective: to relate
Outcome: \quad Favourable $=$ categories 1 and 2
Unfavourable $=$ categories 3 and 4
to
Treatment: $\quad 0=$ Control
Baseline age

Standard notation for a 2×2 table

	Control	Treated	Total
Success	s_{C}	s_{T}	s
Failure	f_{C}	f_{T}	f
Total	n_{C}	n_{T}	n

Using Example 2

	Control	Treated	Total
Favourable	69	101	170
Unfavourable	96	75	171
Total	165	176	341

Estimation of difference

(1) Simple proportions

$p_{i}=P($ Success; Treatment Group i), $i=C, T$

Control
$\hat{\mathrm{p}}_{\mathrm{C}}=\frac{\mathrm{s}_{\mathrm{C}}}{\mathrm{n}_{\mathrm{C}}}$
$\frac{69}{165}=0.42$

Treated

$$
\hat{\mathrm{p}}_{\mathrm{T}}=\frac{\mathrm{s}_{\mathrm{T}}}{\mathrm{n}_{\mathrm{T}}}
$$

$$
\frac{101}{176}=0.57
$$

(2) Odds ratio: the Odds of a success for a patient in group T relative to the Odds of a success for a patient in group C

$$
\psi=\frac{\mathrm{p}_{\mathrm{T}}\left(1-\mathrm{p}_{\mathrm{C}}\right)}{\mathrm{p}_{\mathrm{C}}\left(1-\mathrm{p}_{\mathrm{T}}\right)} \begin{array}{lll}
>1 & \text { Group T better } \\
& =1 & \text { No difference } \\
& \text { Group T worse }
\end{array}
$$

Odds ratio of a favourable outcome in the treated relative to the control group

$$
\hat{\psi}=\frac{101 \times 96}{69 \times 75}=1.874
$$

(3) Log odds ratio

denoted by $\theta: \quad \theta=\log \psi$
>0 Group T better
$=0$ No difference
<0 Group T worse
estimated by $\quad \hat{\theta}=\log 1.874=0.628$

$$
\begin{aligned}
\operatorname{se}(\hat{\theta}) & =\left(\frac{1}{\mathrm{~s}_{\mathrm{C}}}+\frac{1}{\mathrm{~s}_{\mathrm{T}}}+\frac{1}{\mathrm{f}_{\mathrm{C}}}+\frac{1}{\mathrm{f}_{\mathrm{T}}}\right)^{\frac{1}{2}} \\
& =\left(\frac{1}{69}+\frac{1}{101}+\frac{1}{96}+\frac{1}{75}\right)^{\frac{1}{2}}=0.2194
\end{aligned}
$$

95\% confidence interval for $\boldsymbol{\theta}$

$\hat{\theta} \pm 1.96 \mathrm{se}(\hat{\theta})$
0.628 ± 1.96 (0.2194)
(0.198, 1.058)

Hence, 95\% Cl for ψ
$\exp [\hat{\theta} \pm 1.96 \operatorname{se}(\hat{\theta})]$
(1.22, 2.88)

Hypothesis testing

$H_{0}: \theta=0$
vs $H_{1}: \theta \neq 0$
i.e. $\psi=1, p_{C}=p_{T}$
i.e. $\psi \neq 1, p_{C} \neq p_{T}$

Pearson's chi-square test

$$
X^{2}=\sum \frac{(\mathrm{O}-\mathrm{E})^{2}}{\mathrm{E}}=8.256 \quad \text { c.f. } \chi_{1}^{2}
$$

Significant result p 0.004

Observed (Expected)	Control	Treated	Total
Favourable	$69(82.26)$	$101(87.74)$	170
Unfavourable	$96(82.74)$	$75(88.26)$	171
Total	165	176	341

Approach via efficient score and Fisher's information statistics for log odds ratio θ

Efficient score: \quad Z: measure of group T advantage over group C
 $\mathrm{Z}=\frac{\mathrm{S}_{\mathrm{T}} \mathrm{f}_{\mathrm{C}}-\mathrm{s}_{\mathrm{C}} \mathrm{f}_{\mathrm{T}}}{\mathrm{n}}$

Fisher's information: $\quad \mathrm{V}^{\prime}$: amount of information in the data about the group effect
$\mathrm{V}^{\prime}=\frac{\mathrm{n}_{\mathrm{C}} \mathrm{n}_{\mathrm{T}} \mathrm{sf}}{\mathrm{n}^{3}}$

$$
\begin{aligned}
\mathrm{Z} & =\frac{\mathrm{s}_{\mathrm{T}} \mathrm{f}_{\mathrm{C}}-\mathrm{s}_{\mathrm{C}} \mathrm{f}_{\mathrm{T}}}{\mathrm{n}}=\frac{101 \times 96-69 \times 75}{341}=13.258 \\
\mathrm{~V}^{\prime} & =\frac{\mathrm{n}_{\mathrm{C}} \mathrm{n}_{\mathrm{T}} \mathrm{sf}}{\mathrm{n}^{3}}=\frac{165 \times 176 \times 170 \times 171}{341^{3}}=21.290
\end{aligned}
$$

Test statistic for $\mathbf{H}_{0}: \boldsymbol{\theta}=\mathbf{0} \quad \frac{\mathrm{Z}^{2}}{\mathrm{~V}^{\prime}}$

$$
\frac{\mathrm{Z}^{2}}{\mathrm{~V}^{\prime}}=8.256 \quad \text { (equal to Pearson's chi-square statistic) }
$$

Under $\mathbf{H}_{0}: \quad \frac{\mathrm{Z}^{2}}{\mathrm{~V}^{\prime}} \sim \chi_{1}^{2}$

Maximum likelihood estimate of $\theta \cong \frac{\mathrm{Z}}{\mathrm{V}^{\prime}}$

$$
\frac{\mathrm{Z}}{\mathrm{~V}^{\prime}}=\frac{13.258}{21.290}=0.623
$$

Standard error of $\frac{\mathrm{Z}}{\mathrm{V}^{\prime}}$ is $\frac{1}{\sqrt{\mathrm{~V}^{\prime}}}$

$$
\frac{1}{\sqrt{\mathrm{~V}^{\prime}}}=\frac{1}{\sqrt{21.290}}=0.217
$$

- Approximate 95% confidence interval for θ

$$
\frac{\mathrm{Z}}{\mathrm{~V}^{\prime}} \pm 1.96 \frac{1}{\sqrt{\mathrm{~V}^{\prime}}}
$$

$0.623 \pm 1.96(0.217)$
(0.198, 1.048)

- Approximate 95\% confidence interval for ψ
$\exp \left[\frac{\mathrm{Z}}{\mathrm{V}^{\prime}} \pm 1.96 \frac{1}{\sqrt{\mathrm{~V}^{\prime}}}\right]$
(1.22, 2.85)

2.3 Logistic analysis using SAS Proc Logistic

Model: $\log \left[\frac{\mathrm{p}\left(\mathrm{z}_{\mathrm{i}}\right)}{1-\mathrm{p}\left(\mathrm{z}_{\mathrm{i}}\right)}\right]=\alpha+\beta \mathrm{z}_{\mathrm{i}}$
where $p\left(z_{i}\right)=$ probability of a favourable outcome

$$
z_{\mathrm{i}}=\left\{\begin{array}{c}
0: \text { if treat }=0(\text { Control }) \\
1: \text { if treat }=1(\text { Treated })
\end{array}\right.
$$

	Control	Treated	Total
Favourable	69	101	170
Unfavourable	96	75	171
Total	165	176	341

SAS Proc Logistic program and output are shown in Supplement 2.1

(1) Estimation of difference

Log odds ratio θ for a favourable outcome Treated: Control

$$
\theta=\log \left[\frac{\mathrm{p}(1)\{1-\mathrm{p}(0)\}}{\mathrm{p}(0)\{1-\mathrm{p}(1)\}}\right]=(\alpha+\beta \times 1)-(\alpha+\beta \times 0)
$$

From 2×2 table

$$
\hat{\theta}=\log \left(\frac{\mathrm{s}_{1} \mathrm{f}_{0}}{\mathrm{~s}_{0} \mathrm{f}_{1}}\right)=0.628 \quad \operatorname{se}(\hat{\theta})=\left(\frac{1}{\mathrm{~s}_{0}}+\frac{1}{\mathrm{~s}_{1}}+\frac{1}{\mathrm{f}_{0}}+\frac{1}{\mathrm{f}_{1}}\right)^{\frac{1}{2}}=0.2194
$$

Using Efficient score and Fisher's information

$$
\hat{\theta} \cong \frac{\mathrm{Z}}{\mathrm{~V}^{\prime}}=0.623 \quad \operatorname{se}(\hat{\theta}) \approx \frac{1}{\sqrt{\mathrm{~V}^{\prime}}}=0.217
$$

From SAS

$$
\hat{\theta}=\hat{\beta}=0.628 \quad \text { se }(\hat{\theta})=0.2194
$$

Odds ratio ψ

$$
\begin{aligned}
& \hat{\psi}=\frac{101 \times 96}{69 \times 75}=1.874 \\
& \frac{\mathrm{P}(\text { Success } ; \text { Treated })}{\mathrm{P}(\text { Failure } ; \text { Treated })}=1.874 \frac{\mathrm{P}(\text { Success } ; \text { Control })}{\mathrm{P}(\text { Failure } ; \text { Control })}
\end{aligned}
$$

95\% CI for ψ

$\exp [0.628 \pm 1.96(0.2194)]$
(1.22, 2.88)
(2) Hypothesis testing of $\mathrm{H}_{0}: \boldsymbol{\theta}=\mathbf{0}$
(a) Likelihood ratio test

$$
\begin{aligned}
\mathrm{D}(0)-\mathrm{D}(\hat{\theta}) & =-2 \ell(0)--2 \ell(\hat{\theta}) \\
& =472.723-464.433 \\
& =8.290 \quad\left(\text { c.f. } \chi_{1}^{2}\right)
\end{aligned}
$$

(b) Score test

$$
\frac{\mathrm{Z}^{2}}{\mathrm{~V}^{\prime}}=8.2562 \quad \text { (c.f. } \chi_{1}^{2} \text {) Pearson's chi-square statistic }
$$

(c) Wald's chi-square

$$
\left(\frac{\hat{\theta}}{\operatorname{se}(\hat{\theta})}\right)^{2}=8.1885
$$

Statistically significant difference between treatments

Response variable

- Proc Logistic models the probability of the first ordered value of the response variable as given in the response profile
- Default ordering of response is on formatted labels (if formatted) otherwise actual values
e.g. Dead (2) Survival (1)

Option ORDER = INTERNAL on MODEL or PROC LOGISTIC statement forces
SAS to take order of actual values

Explanatory variables

- Options on CLASS statement for fitting factors

ORDER = INTERNAL
Order on actual values not on the default formatted values

PARAM = REF

Reference cell parameterisation. The level of the variable to use as the reference level can be specified.
e.g. treat (ref=‘Control') The default is REF=LAST.

- To fit a continuous covariate, include variable in MODEL statement only
- PROC LOGISTIC offers more control of ordering explanatory variables than PROC GENMOD

2.4 Logistic analysis using SAS Proc Genmod

SAS Proc Genmod program and output are shown in Supplement 2.2

2.5 Why use Logistic analyses?

Why do we use Logistic analysis rather than:
simple Pearson's chi-square
the Efficient score and Fisher's information?

- to give a systematic way of investigating the structure of data using a linear model
- so that we may adjust for covariate prognostic factors
- so that we get a magnitude and a confidence interval for an effect

2.6 Further example using SAS Proc Logistic

To examine the effect of:

- age
- treatment adjusted for age on favourable outcome

SAS Proc Logistic program and output are shown in
Supplement 2.3

From Proc Logistic output (Supplement 2.3)

(1) Hypothesis testing

Change in deviance due to age

$$
\begin{aligned}
& =472.723-464.600 \\
& =8.123\left(\text { c.f. } \chi_{1}^{2}\right)
\end{aligned}
$$

Change in deviance due treat (adjusted for age)

$$
\begin{aligned}
& =464.600-454.770 \\
& =9.830\left(\text { c.f. } \chi_{1}^{2}\right)
\end{aligned}
$$

Analysis of deviance table:

Source	df	Deviance
age	1	8.123
treat (adjusted for age)	1	9.830
residual	338	454.770
total	340	472.723

Effect of baseline age is significant $(p=0.004)$
Treatment effect is still significant having adjusted for baseline age

(2) Estimation: calculation of log odds ratios

Model: $\quad \log \left[\frac{\mathrm{p}\left(\underline{\mathrm{z}}_{\mathrm{i}}\right)}{1-\mathrm{p}\left(\underline{\mathrm{z}}_{\mathrm{i}}\right)}\right]=\alpha+\eta\left(\underline{\mathrm{z}}_{\mathrm{i}}\right)$
where $\quad \eta\left(\underline{z}_{i}\right)=\beta_{1} z_{i 1}+\beta_{2} z_{i 2}$

$$
\begin{aligned}
& z_{i 1}=\text { age } \\
& z_{i 2}=\left\{\begin{array}{l}
0: \text { if treat }=0(\text { Control }) \\
1: \text { if treat }=1 \text { (Treated })
\end{array}\right.
\end{aligned}
$$

$\mathrm{p}\left(\mathrm{z}_{\mathrm{i}}\right)$ is probability of a favourable outcome
log odds of survival for patient with baseline age $=20$ relative to patient with age $=50$ receiving the same treatment: θ

$$
\begin{aligned}
& \log \left[\frac{\mathrm{p}\left(20, \mathrm{z}_{\mathrm{i} 2}\right)}{1-\mathrm{p}\left(20, \mathrm{z}_{\mathrm{i} 2}\right)}\right]=\alpha+\beta_{1} 20+\beta_{2} \mathrm{z}_{\mathrm{i} 2} \\
& \log \left[\frac{\mathrm{p}\left(50, \mathrm{z}_{\mathrm{i} 2}\right)}{1-\mathrm{p}\left(50, \mathrm{z}_{\mathrm{i} 2}\right)}\right]=\alpha+\beta_{1} 50+\beta_{2} \mathrm{z}_{\mathrm{i} 2} \\
& \hat{\theta}=\operatorname{logit}\left[\mathrm{p}\left(20, \mathrm{z}_{\mathrm{i} 2}\right)\right]-\operatorname{logit}\left[\mathrm{p}\left(50, \mathrm{z}_{\mathrm{i} 2}\right)\right] \\
& \quad=\hat{\beta}_{1}(-30)=-0.0226(-30)=0.678 \\
& \hat{\psi}=\mathrm{e}^{0.678}=1.97
\end{aligned}
$$

Odds of a favourable outcome are greater for younger patients

