## Using Bayesian Analysis in **Randomised Phase II Trials** to Plan Phase III

## Lucinda Billingham

**Professor of Biostatistics** 

Director, MRC Midland Hub for Trials Methodology Research

**Biostatistics Lead, Cancer Research UK Clinical Trials Unit** 

University of Birmingham







Methodology Research

Midlands Hub

MRC HTMR Network Workshop, London, March 16th 2010 Using Existing Data to Inform Clinical Trial Design

## Acknowledgements

- Professor Philip Johnson, University of Birmingham
- Professor Keith Abrams, University of Leicester
- Progen Pharmaceuticals
- Cancer Research UK

#### **Reference:**

David J Spiegelhalter, Keith R Abrams, Jonathan P Myles; Bayesian Approaches to Clinical Trials and Health-Care Evaluation; Wiley 2004

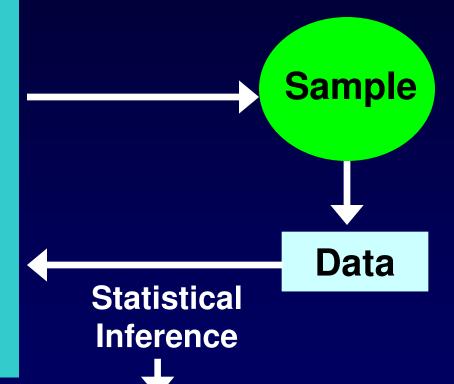
## Agenda

- Introduction
  - Bayesian analysis
  - Hazard ratios
  - Randomised phase II trials
- Application of Bayesian analysis to randomised Phase II trials
  - Illustrative example in HCC
  - Why is it a potentially useful approach
  - How to do it
  - Interpretation of results
- Application of Bayesian analysis in seamless Phase II / III setting
- Extensions to methodology
- Objections to Bayesian methods

## **Aim of Statistical Analysis**

#### **Population**

What is the effect of the new treatment on patient outcome compared to the standard treatment?



Classical / frequentist analysis: Estimate treatment effect with 95% confidence intervals Statistically test hypothesis  $\rightarrow$  p-value

## What is a Bayesian Approach to Analysis?

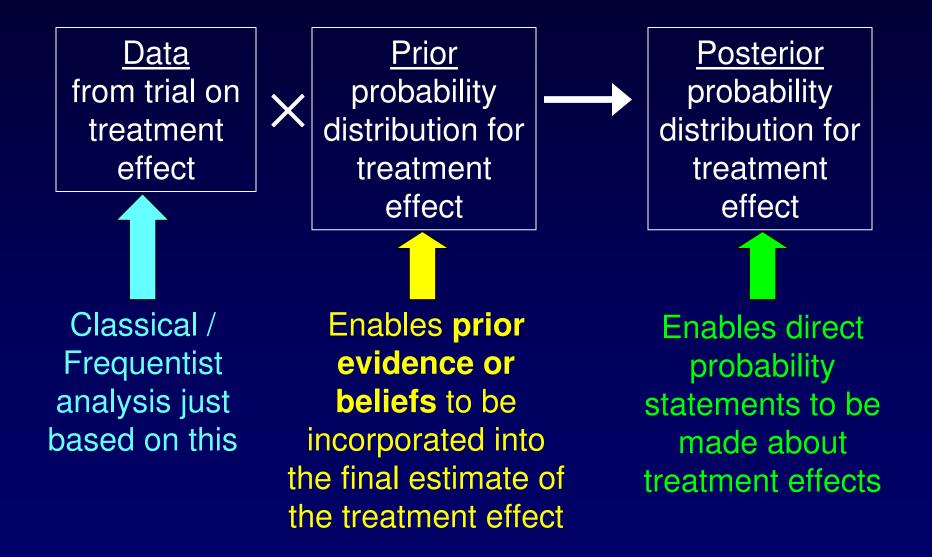
 Method of statistical analysis based on theorem devised by Reverend Thomas Bayes (1702-1761)



$$p(B/A) = \frac{p(A/B) \times p(B)}{p(A)}$$

- Alternative method to the classical / frequentist approach
  - 'Many practising statisticians are fairly ignorant of the methods used by the rival camp and too busy to have time to find out' Bland and Altman BMJ 1998, 317: 1151
- Acknowledges that the unknown quantity of interest is not a fixed value but could be any value with an associated probability

## **Bayesian Approach to Analysis**



## Advantages of a Bayesian Analysis Classical

• Results are in the form of a p-value

p-value = p ( *data* | no treatment effect )

#### **Bayesian**

- Results are in the form of a probability distribution for the treatment effect
- Allows direct probability statements to be made about treatment effects

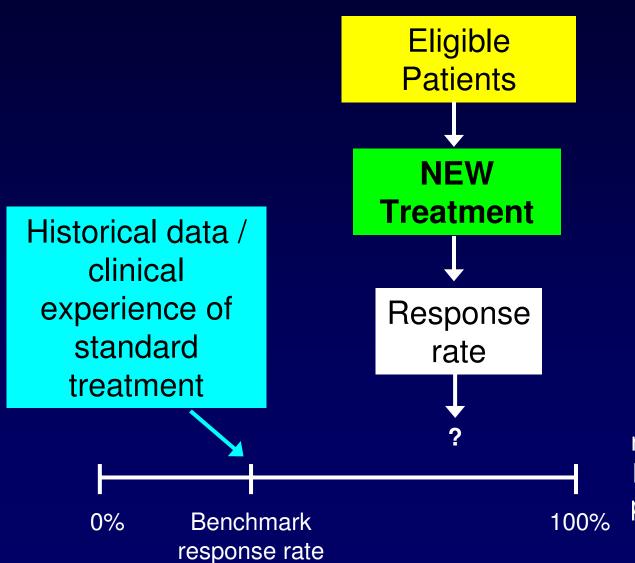
posterior  $\rightarrow$  p (*treatment effect* | data, prior)

## Measuring Treatment Effect as a Hazard Ratio (HR)

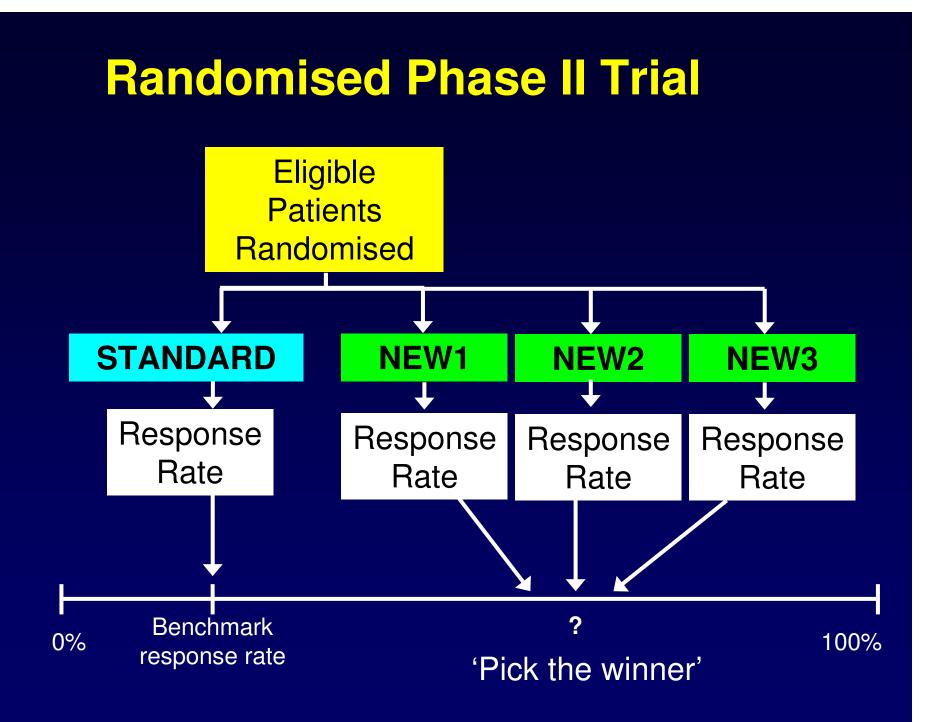
- Specific summary measure for survival data
- Measures the relative survival experience of two groups
- Hazard Ratio = <u>Hazard of death on New</u> Hazard of death on Standard where the hazard is the instantaneous risk of death at
  - any point in time
- Interpretation for survival
   HR = 1 ⇒ no difference between treatments
   HR < 1 ⇒ New treatment superior</li>
   HR > 1 ⇒ New treatment inferior
- Often work with In HR as tends to have normal distribution

| Phase I   | What is a safe dose to<br>give for the NEW<br>treatment and with what<br>toxicities?                           | Toxicities                                          |
|-----------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Phase II  | Is the efficacy of the<br>NEW treatment worthy of<br>direct comparison to<br>STANDARD treatment of<br>the day? | Intermediate<br>outcome of<br>efficacy:<br>Response |
| Phase III | How does the NEW<br>treatment compare to the<br>STANDARD treatment of<br>the day in terms of<br>efficacy?      | Overall<br>outcome of<br>efficacy:<br>Survival time |

## Single Arm Phase II Trial



Problem: is the response rate better because of different patient populations?



#### Possible Phase II / Phase III Trial Designs

Randomised Randomised Phase II Phase III

Seamless phase II/III (e.g. Inoue, Thall, Berry; Biometrics 2002) Randomised Phase II Phase III

#### **Decision Point**

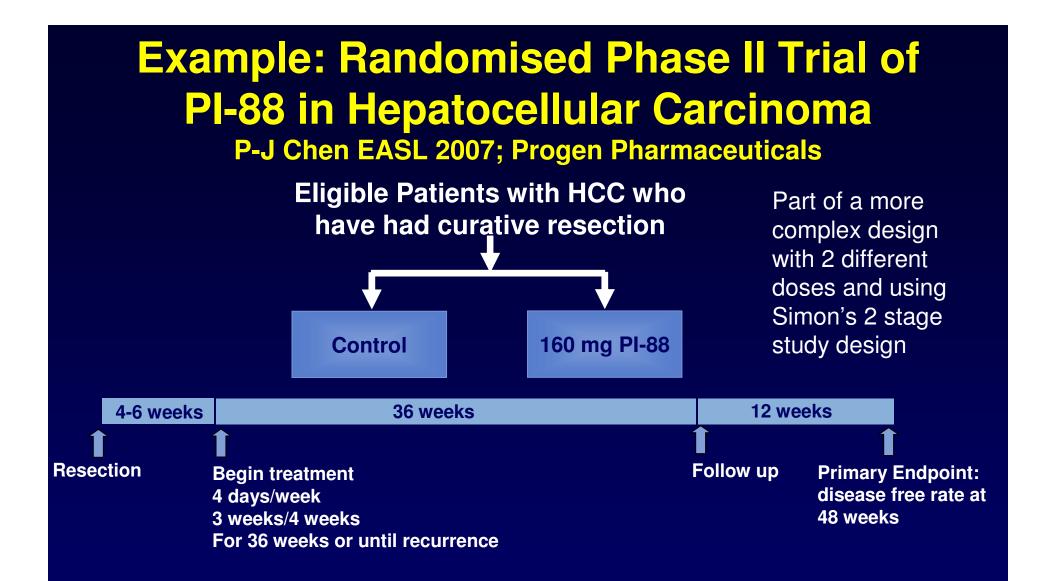
Should we proceed to phase III?

## Current Practice for the Analysis of Randomised Phase II Trials

- Estimates and confidence intervals

   Not clear how decision to proceed is made
- Hypothesis testing
  - Often used inappropriately so RPII just looks like underpowered PIII
  - How do the results help in decision to proceed?

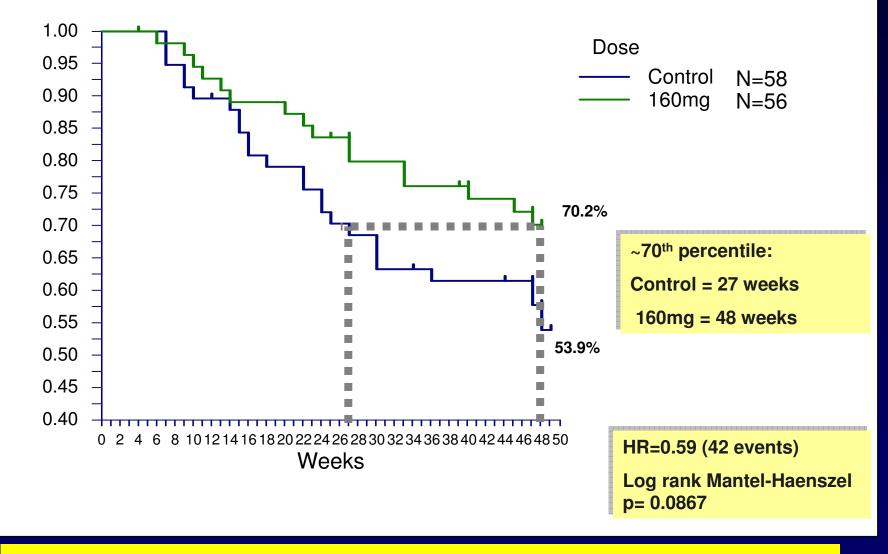
Lack of knowledge on how to appropriately analyse randomised phase II trials



Goal of trial: To explore possible efficacy of PI-88 in reducing early tumour recurrence in patients who have had primary liver cancer tumours removed by surgery in order to make a decision to move to Phase 3 clinical development

## **Disease-free survival analysis**

P-J Chen EASL 2007; Progen Pharmaceuticals



**Should they proceed to a Phase III trial?** 

Disease free survival

## What Do Researchers Really Want to Know?

- Given the observed treatment effect in the randomised phase II trial (and other prior knowledge)
  - What is the likely value of the true treatment effect?
  - What is the predicted result for the planned phase III trial?
  - What are the chances of getting a statistically significant result if we continue to a phase III?

#### Bayesian analysis will give these answers

## **Bayesian Analysis in Clinical Trials**

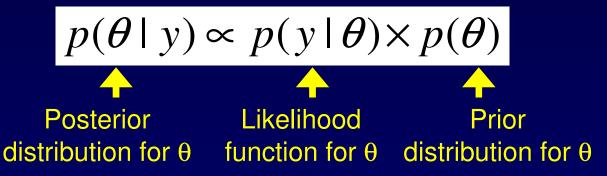
- Recommended approach for monitoring of randomised Phase III clinical trials
  - e.g. Parmar et al Lancet 2001; Berry Nature Reviews 2006
  - Aids decision-making regarding stopping a trial early
- Not explicitly been talked about for randomised phase II, but natural extension from monitoring context

## Outcome Measures: Phase II versus Phase III

|           | Phase II        | Phase III     |
|-----------|-----------------|---------------|
| Primary   | Response rate — | Survival time |
|           |                 | plus others   |
| Secondary | Survival time   | Response rate |
|           |                 | plus others   |

## **Bayesian Analysis**

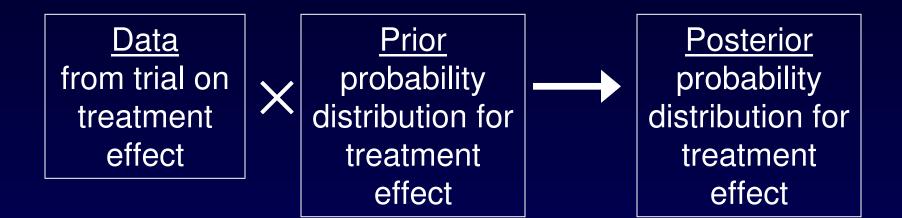
- Unknown parameter of interest is treatment effect measured in terms of log hazard ratio  $\theta = \ln (HR)$
- Bayes theorem for unknown parameter  $\theta$



Conjugate normal analysis

 Normal likelihood so use normal prior distributions

## **Bayesian Analysis of PI-88 HCC Trial**

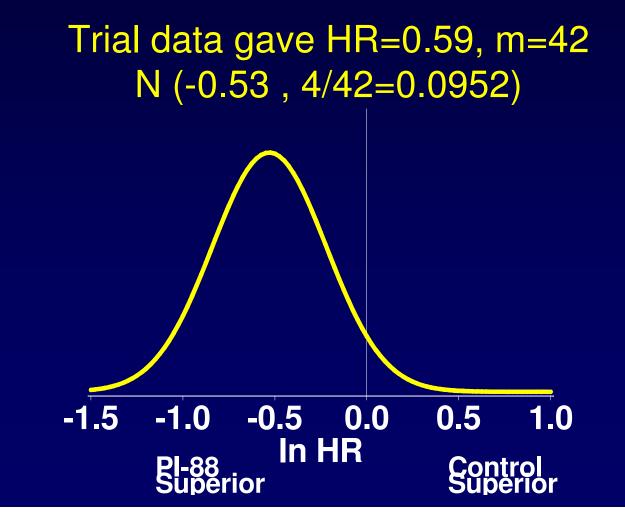


#### Aim: estimate treatment effect i.e. Hazard Ratio (HR)

Calculations based on In HR  $HR = 1 \rightarrow In HR = 0$   $HR < 1 \rightarrow In HR$  negative  $HR > 1 \rightarrow In HR$  positive Conjugate normal analysis makes calculations straightforward

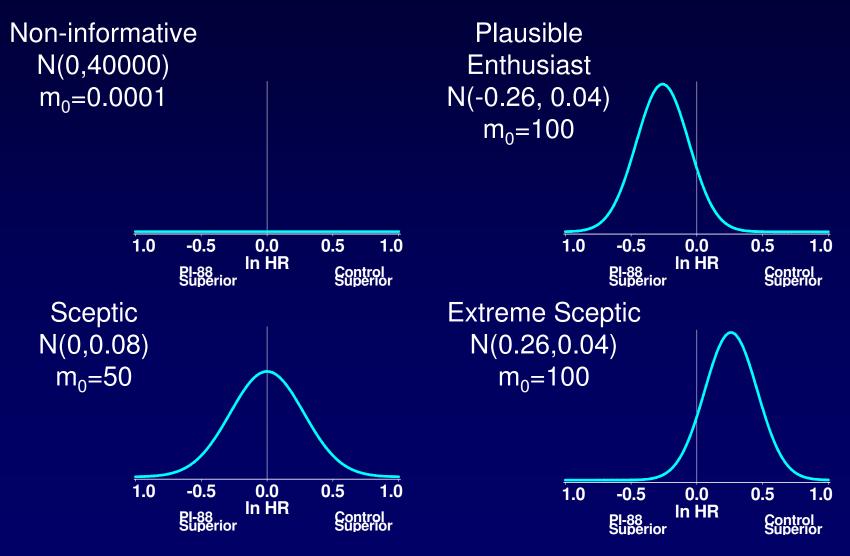
## **Data from Trial: Likelihood Function**

 $y_m \mid \theta \sim N(\theta, 4/m)$  where m = number of events (Tsiatis 1981)



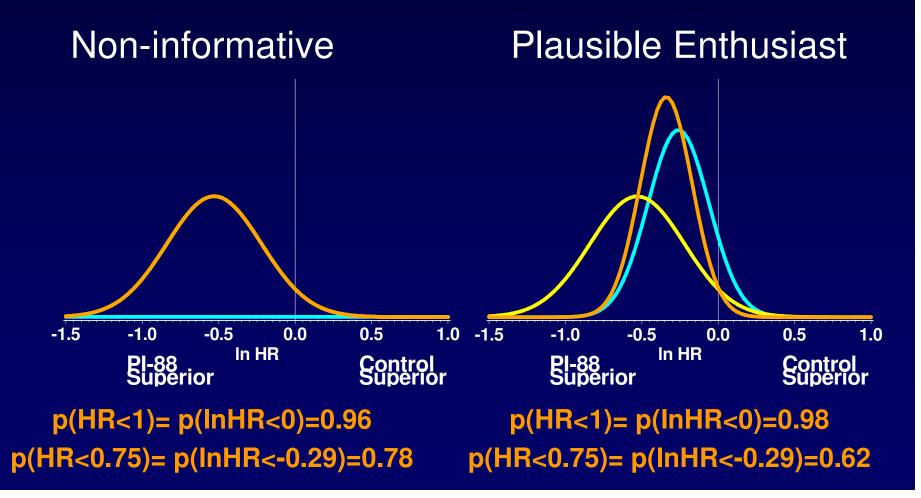
## **Prior Distributions**

 $\theta \sim N(\mu_0, 4/m_0)$  where  $m_0 = number of events$ 

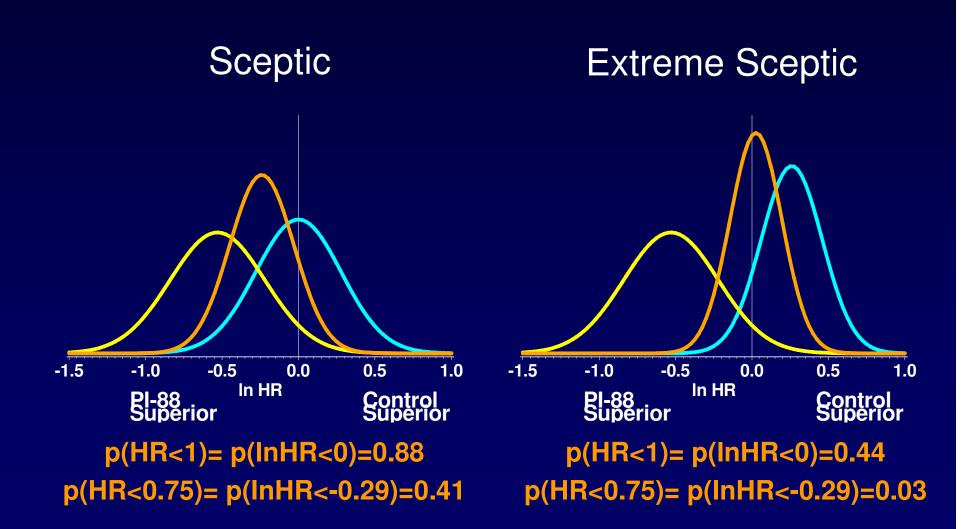


## **Posterior Distributions (1)**

$$\theta \mid y_m \sim N\left(\frac{m_0\mu_0 + my_m}{m_0 + m}, \frac{4}{m_0 + m}\right)$$



## **Posterior Distributions (2)**



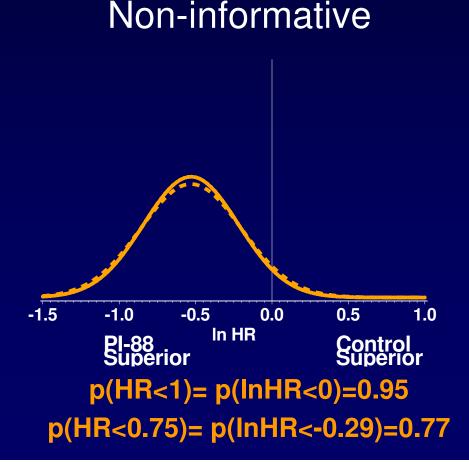
## **Summary of Posterior Results**

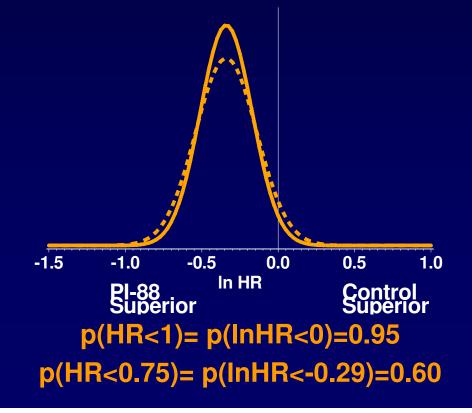
|                         | Posterior        | P(HR<1) | P(HR<0.75) |
|-------------------------|------------------|---------|------------|
| Non-<br>informative     | N(-0.53,0.0952)  | 0.96    | 0.78       |
| Plausible<br>Enthusiast | N(-0.34, 0.0282) | 0.98    | 0.62       |
| Sceptic                 | N(-0.24, 0.0435) | 0.88    | 0.41       |
| Extreme<br>Sceptic      | N(0.026, 0.0282) | 0.44    | 0.03       |

## **Predictive Distributions (1)**

$$Y_n \mid y_m \sim N\left(\frac{m_0\mu_0 + my_m}{m_0 + m}, 4\left(\frac{1}{m_0 + m} + \frac{1}{n}\right)\right)$$

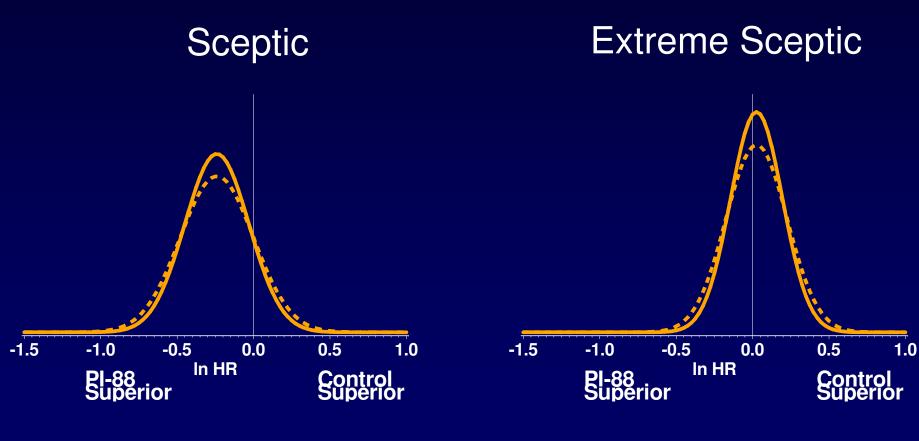
Plan new trial with 300 events; increase variance of posterior by 4/300=0.0133





**Plausible Enthusiast** 

## **Predictive Distributions (2)**



p(HR<1)= p(InHR<0)=0.84 p(HR<0.75)= p(InHR<-0.29)=0.42 p(HR<1)= p(InHR<0)=0.45 p(HR<0.75)= p(InHR<-0.29)=0.06

## **Summary of Predictive Results**

|             | Posterior        | P(HR<1) | P(HR<0.75) |
|-------------|------------------|---------|------------|
|             | Predictive       |         |            |
| Non-        | N(-0.53,0.0952)  | 0.96    | 0.78       |
| informative | N(-0.53,0.1086)  | 0.95    | 0.77       |
| Plausible   | N(-0.34, 0.0282) | 0.98    | 0.62       |
| Enthusiast  | N(-0.34, 0.0415) | 0.95    | 0.60       |
| Sceptic     | N(-0.24, 0.0435) | 0.88    | 0.41       |
|             | N(-0.24, 0.0568) | 0.84    | 0.42       |
| Extreme     | N(0.026, 0.0282) | 0.44    | 0.03       |
| sceptic     | N(0.026, 0.0415) | 0.45    | 0.06       |

## Hybrid Classical-Bayesian Approach to Power

- Assume conclusions of trial will be based entirely on classical analysis
- Classical power = p( reject H0 |  $\theta = \theta^*$ )
- Use predictive distribution to calculate the overall unconditional probability of a 'classically' significant result
  - 'Expected power'
  - 'Assurance' (O'Hagan et al Pharmaceutical Statistics 2005)

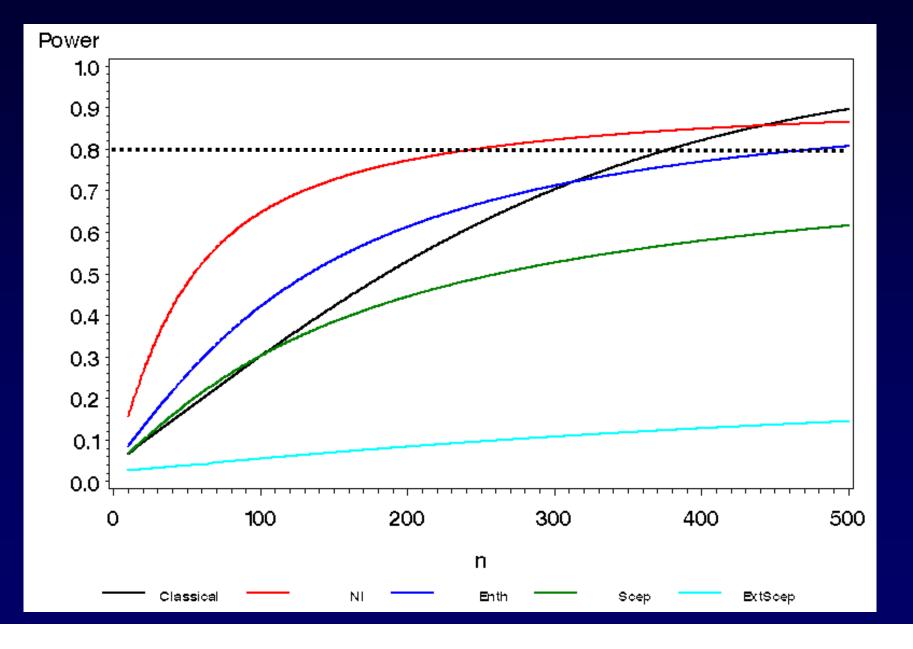
## Predictive Probability of Obtaining a 'Classically' Significant Result in New Trial

n=300, significance level = 5% Classical power = p ( reject H0 |  $\theta^*$ =-0.29 ie HR\*=0.75) = 0.70

$$Y_n \mid y_m \sim N\left(\frac{m_0\mu_0 + my_m}{m_0 + m}, 4\left(\frac{1}{m_0 + m} + \frac{1}{n}\right)\right)$$
$$Power_C = \Phi\left[\sqrt{\frac{m_0 + m}{m_0 + m + n}}\left(\frac{\mu_n\sqrt{n}}{2} + z_{\varepsilon}\right)\right]$$

|                      | Power (n=300) |
|----------------------|---------------|
| Non-informative      | 82%           |
| Plausible Enthusiast | 71%           |
| Sceptic              | 53%           |
| Extreme Sceptic      | 11%           |

## **Hybrid Classical-Bayesian Power Curves**



## **'Bayesian Power'**

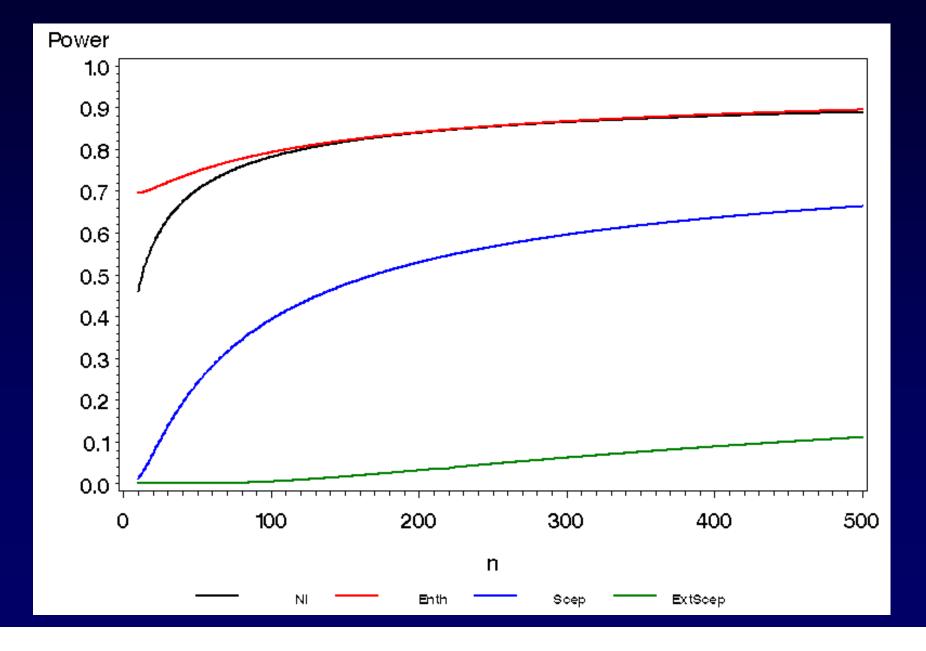
- Assume conclusions of trial will be based on Bayesian analysis
- Define Bayesian significance  $p(\theta > 0 | data) < \epsilon$
- Use predictive distribution to calculate the expected 'Bayesian' power, averaged with respect to the prior distribution

## Predictive Probability of Obtaining a 'Bayesian' Significant Result in New Trial

$$Y_{n} \mid y_{m} \sim N\left(\frac{m_{0}\mu_{0} + my_{m}}{m_{0} + m}, 4\left(\frac{1}{m_{0} + m} + \frac{1}{n}\right)\right)$$
$$Power_{B} = \Phi\left[\frac{\mu_{n}\sqrt{m_{0} + m + n}\sqrt{m_{0} + m}}{2\sqrt{n}} + \sqrt{\frac{m_{0} + m}{n}}z_{\varepsilon}\right]$$

|                      | Power (n=300) |
|----------------------|---------------|
| Non-informative      | 86%           |
| Plausible Enthusiast | 87%           |
| Sceptic              | 60%           |
| Extreme Sceptic      | 6%            |

## **Bayesian Power Curves**



## Example: Phase II/III Inoue, Thall & Berry Biometrics 2002

- NSCLC trial, E vs S, n=900, 72 months
- $\phi(t) = p (\Delta > 0 | D_{72})$
- Large φ(t) ⇒if maximum allowed future resources were expended then likely that E>S
- Decision based on predictive probabilities involving future data at 72 months
- PII to PIII decision: analysis at t=8, 10, 12 months
  - $0.01 < P (\phi(t) > 0.98) < 0.80$  then continue PII
  - $P (\phi(t) > 0.98) \ge 0.80$  then organise PIII
  - $P (\phi(12)>0.98) < 0.80$  then conclude E<S

## **Extensions to Methodology**

- Consider other priors: lump and smear, evidencebased
- Response rate as primary outcome measure
  - Binomial likelihood
  - Beta prior
  - Beta-Binomial conjugate analysis
- Non-conjugate analysis
  - Use software to simulate posterior and predictive distribution
- Predicting phase III primary outcome (e.g. survival) from phase II primary outcome (e.g. response)
- Extension to include utilities (Bayesian decision theoretic approach) and costs (value of information) in the decision making
- Trial design appropriate to planned analysis

# Why Do People Object to the Use of Bayesian Methods?

- Use of priors introduces an element of subjectivity
- Which priors to use
- No single measure of statistical significance
- Fear of acceptance in terms of publication and regulatory bodies
- Computational aspects
- Lack of experience and understanding

## Conclusions

- Use of randomised phase II trials is increasing
- No clear guidance on how to analyse randomised phase II trials
- Bayesian analysis is promoted as method for interim analysis of phase III
- Bayesian analysis seems to be the natural approach for randomised phase II trials that will give researchers the answers they want and should be promoted