Structural Uncertainty in Health Economic Models: what is it and what can we do about it?

Why model?

- RCTs and meta-analyses provide short term results in selected populations
- Need to include all relevant information
- Need to estimate long-term costs and benefits
- Framework to establish value of further research BUT
- Reality is complicated!
- Need for assumptions and judgements
- Variable amount / validity of data
- Need to acknowledge structural or model uncertainty

Sources of uncertainty

Parameter uncertainty

• how precisely a parameter has been estimated

• PSA

Methodological uncertainty

- analytic method (Markov / decision tree / microsimulation)
- perspective
- time horizon, cycle length

Structural uncertainty

• Expanded models with additional parameters

Sources of uncertainty

Structural uncertainty: statistical models

Structural uncertainty: sources of evidence

Structural uncertainty: state choices

RCT comparing aspirin_MR dipyridamole vs. aspirin for secondary prevention of vascular occlusive events

Structural uncertainty: choice of comparators

Deterministic or scenario sensitivity analysis

Scenario	ICER in thousands per QALY	
Base case LVEF<35%	£31.3	
Subgroup treatment effect	£23.0	
Implant costs reduced to £16,250	£22.3	
Repair and replacement episodes halved	£27.1	
Utility for Amiodarone group 0.65	£18.8	
Extrapolation over the lifetime of all patients	£24.0	

Deterministic or scenario sensitivity analysis

Scenario		ICER in thousands per QALY	
Base case LVEF<35%		£31.3	
Subgroup t	Which is most plausible?		
Implant cos	ts reduced to £16,250	£22.3	
Repair and	replacement episodes halved	£27.1	
Utility for A	miodarone group 0.65	£18.8	
Extrapolatio	on over the lifetime of all patients	£24.0	

Framework for model development

Message

- Framework for accommodating uncertainty
- Use model expansion
- Model plausibility formally assessed from data or experts
- If no clear winner can use model averaging
- Interested in examples of structural uncertainty

Selected references

Bojke L, Claxton K, Sculpher M, Palmer S. Characterising structural uncertainty in decision analytic models: a review and application of methods. Value In Health 2009;12(5):739-49.

Jackson CH, Sharples LD, Thompson SG. Structural and parameter uncertainty in Bayesian cost-effectiveness models. Journal of the Royal Statistical Society: Series C (Applied Statistics) 2009;59(2):233-53.

Jackson CH, Thompson SG, Sharples LD. Accounting for uncertainty in health economic decision models by using model averaging. Journal of the Royal Statistical Society, Series A 2009;172(2):383-404.

Bojke L, Claxton K, Sculpher M, Palmer S, Abrams K. Eliciting distributions to populate decision-analytic models. Value In Health 2010;13(5):557-64.