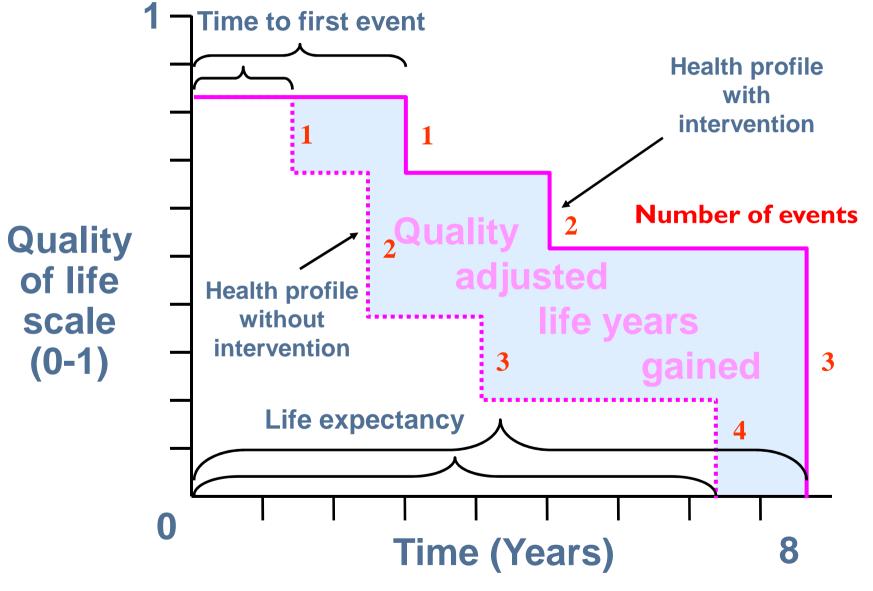
#### HERC Health Economics Research Centre Department of Public Health

UNIVERSITY OF



Alastair Gray Health Economics Research Centre, University of Oxford, UK & Oxford CTSU


Annual Meeting of Network of Hubs for Trials Methodology Research Birmingham, January 31, 2011

# What measures of outcome are useful to health economists?

- Using cost-effectiveness to aid decision-making requires comparing c-e of different interventions
- Therefore we need an effectiveness/outcome measure that can be used in a wide range of settings:
  - Events or event-free time:
    - But events have different severity, cost, consequences
  - Life-years gained
    - but only where survival is main outcome
  - Quality adjusted life years (QALYs)
    - Composite of survival and quality of life



### Using QALYs to measure health gain





### Measuring quality of life impact of events -Two broad alternatives in trial-based studies:

- I. Distribute quality of life instrument to trial participants (all or sample) and averaging
  - I. eg at final follow-up
  - 2. or baseline and final follow-up
  - 3. or at baseline, intermediate points and follow-up

Then calculate mean difference/mean profiles

- 2. Attach quality of life decrements to non-fatal events observed in trial
  - I. typically from external estimates



#### Examples of each approach: I

Simon J, Gray A, Clarke P, Wade A, Neil A, Farmer A on behalf of the Diabetes Glycaemic Education and Monitoring Trial Group. Costeffectiveness of self-monitoring of blood glucose in the management of patients with non-insulin treated type 2 diabetes: economic evaluation of data from the randomised controlled DiGEM trial. BMJ 2008; 336(7654):1177-80. PMID: 18420663

type 2 diabetes receiving standardised usual care, less intensive self monitoring of blood glucose, or more intensive self monitoring of blood glucose

|                                         |     | Utility       |                       |                               | Difference                                           |                                                      |  |
|-----------------------------------------|-----|---------------|-----------------------|-------------------------------|------------------------------------------------------|------------------------------------------------------|--|
| Intervention                            | No  | Baseline      | 12 month<br>follow-up | Change                        | Less intensive group<br>v standardised usual<br>care | More intensive group<br>v standardised usual<br>care |  |
| Standardised usual<br>care group        | 152 | 0.799 (0.023) | 0.798 (0.034)         | -0.001 (-0.060 to<br>0.059)   | —                                                    | _                                                    |  |
| Less intensive self<br>monitoring group | 150 | 0.781 (0.022) | 0.755 (0.024)         | -0.027 (-0.069 to 0.015)      | -0.029 (-0.084 to<br>0.025)                          | -0.072 (-0.127 to<br>-0.017)*                        |  |
| More intensive self<br>monitoring group | 151 | 0.807 (0.024) | 0.733 (0.024)         | -0.075 (-0.119 to<br>-0.031)* | -                                                    | _                                                    |  |
| *P<0.05.                                |     |               |                       |                               |                                                      |                                                      |  |

#### Examples of each approach: 2

Decrements estimated using cross-sectional data, linear or tobit regression

| Complication             | Effect on utility       |  |  |  |
|--------------------------|-------------------------|--|--|--|
| No complications         | 0.785                   |  |  |  |
| MI                       | -0.055 (-0.042, -0.067) |  |  |  |
| IHD (angina)             | -0.090 (-0.054,-0.126)  |  |  |  |
| Stroke                   | -0.164 (-0.105, -0.222) |  |  |  |
| Heart Failure            | -0.108 (-0.048, -0.169) |  |  |  |
| Amputation               | -0.280 (-0.170, -0.389) |  |  |  |
| Loss of sight in one eye | -0.074 (-0.025,-0.124)  |  |  |  |

Clarke P, Gray A, Holman R. Estimating utility values for health states of type 2 diabetic patients using the EQ-5D. Medical Decision Making 2002; 22(4):340-349. PMID: 12150599



### Advantages and disadvantages of each approach:

I) Distributing quality of life instrument to trial participants

Pro: May capture treatment effects, side effect No other QoL data may exist on events/patient group

#### Minus: Respondent burden

Missingness – eg respondents may be healthier Events might be important but rare: EG ACST-2 stroke

#### 2) Attach external quality of life decrements

Pro: Low cost/respondent burden
Decrements may be widely accepted/used, from large sample
Minus: May not exist, may not match trial population
May miss therapy effects, side effects, differences in event severity
.....Decrements may overstate quality of life impact......



# Quality of life as a risk factor:

- Eg analysis of 7348 patients in FIELD trial (fenofibrate in diabetes). EQ-5D administered X-sectionally to all patients
- Multivariate Cox proportional hazard regression models used to estimate hazard ratio associated with EQ-5D on:
  - I. cardiovascular events
  - 2. other major diabetes-related complications
  - 3. death from any cause.
- Results: EQ-5D scores independent predictor of risk
- Each 10 points higher on EQ-5D score = 7% lower rates of cardiovascular events 13% lower rates of other major diabetes-related complications
- 2-14% lower rate of all cause mortality

Clarke PM, Hayes AJ, Glasziou PG, Scott R, Simes J, Keech AC. Using the EQ-5D Index Score as a Predictor of Outcomes in Patients With Type 2 Diabetes. Med Care 2009;47: 61–68

# Quality of life as a risk factor:

**TABLE 2.** Hazard Ratios of Risk Factors and EQ-5D Index Score for Vascular Events, Other Complications of Diabetes, and All Cause Mortality Based on Multivariate Proportional Hazard Models

|                                                        |                         |         |                            |         | All Cause Mortality                      |         |                                             |         |
|--------------------------------------------------------|-------------------------|---------|----------------------------|---------|------------------------------------------|---------|---------------------------------------------|---------|
|                                                        | Vascular I<br>All Indiv |         | Diab<br>Compli<br>All Indi | cations | With Prior<br>Complications<br>or Cancer |         | Without Prior<br>Complications<br>or Cancer |         |
| No. individuals                                        | 7348                    | 3       | 7348                       |         | 1693                                     |         | 5655                                        |         |
| No. events                                             | 453                     |         | 193                        |         | 151                                      |         | 133                                         |         |
| $P_{\rm H}$ test: $\chi^2$ statistic ( <i>P</i> value) | 11.40 (0.25)            |         | 11.72 (0.30)               |         | 9.70 (0.21)                              |         | 3.31 (0.65)                                 |         |
| Variable                                               | HR                      | Р       | HR                         | Р       | HR                                       | Р       | HR                                          | Р       |
| EQ-5D index score per 0.10 point                       | 0.93                    | < 0.001 | 0.87                       | < 0.001 | 0.88                                     | < 0.001 | 0.86                                        | < 0.001 |
| Female                                                 | 0.75                    | 0.007   | 0.54                       | < 0.001 | 0.58                                     | 0.006   |                                             |         |
| Age per 10 yrs                                         | 1.47                    | < 0.001 | 1.70                       | < 0.001 | 1.72                                     | < 0.001 | 2.12                                        | < 0.001 |
| Diabetes duration per 10 yrs                           |                         |         | 1.39                       | 0.002   |                                          | _       |                                             |         |
| HbA1c per 1% increase                                  | 1.19                    | < 0.001 | 1.42                       | < 0.001 | 1.15                                     | 0.045   | 1.21                                        | 0.009   |
| Total/HDL cholesterol ratio per 1%                     | 1.13                    | 0.006   |                            |         |                                          | _       |                                             | _       |
| Body mass index                                        |                         |         | 1.04                       | < 0.001 |                                          |         |                                             |         |
| Systolic blood pressure                                | 1.17                    | < 0.001 | 1.13                       | 0.026   |                                          |         | 1.13                                        | 0.056   |
| Current smoker                                         | 1.57                    | 0.002   | 2.32                       | < 0.001 | 1.78                                     | 0.017   | 3.21                                        | < 0.001 |
| Prior vascular events                                  | 3.06                    | < 0.001 | 1.86                       | < 0.001 |                                          |         |                                             |         |
| Prior diabetic complications                           | 2.36                    | < 0.001 | 10.69                      | < 0.001 | 2.64                                     | < 0.001 |                                             |         |
| Cancer                                                 |                         |         |                            |         | 3.75                                     | < 0.001 | —                                           |         |

Hazard ratios (HRs) for variables that were not significant at P < 0.1 have been omitted from the table.



# If quality of life is a risk factor...

- The quality of life of those having events may be systematically lower <u>before</u> the event occurs
- Therefore analyses averaging across everyone may be overstating the impact
- To test this:
  - Used additional data from UK Prospective Diabetes Study (UKPDS) post study follow-up
  - Up to 7 EQ-5D questionnaires administered. One in 1996/7; 5 annually 2003-2007, plus one final questionnaire to all surviving participants
  - 11,614 fully completed questionnaires from 3,380 participants
  - Working with Maria Alva, Boby Mihaylova on this



# Averages: 1997-2007

#### **Unconditional averages**

|                    | Event              | No event           |                            |
|--------------------|--------------------|--------------------|----------------------------|
|                    | Mean Tariff (S.D.) | Mean Tariff (S.D.) | Difference in means (S.E.) |
| MI (year before)   | 0.595 (0.33)       | 0.693 (0.30)       | -0.098 (0.04)**            |
| MI (prior history) | 0.658 (0.30)       | 0.695 (0.30)       | -0.038 (0.01)**            |
| IHD                | 0.614 (0.32)       | 0.702 (0.30)       | -0.087 (0.01)**            |
| Stroke             | 0.487 (0.37)       | 0.700 (0.30)       | -0.213 (0.02)**            |
| Heart Failure      | 0.501 (0.34)       | 0.698 (0.30)       | -0.197 (0.02)**            |
| Amputation         | 0.475 (0.34)       | 0.695 (0.30)       | -0.220 (0.03)**            |
| Blindness in 1 eye | 0.617 (0.31)       | 0.696 (0.30)       | -0.079 (0.01)**            |

\*\* P-value<0.01



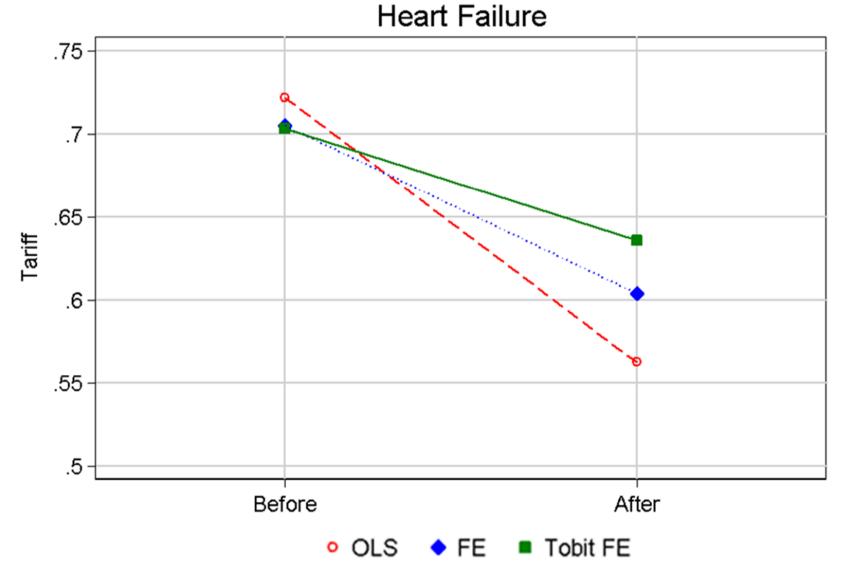
# The models:

- I. Ordinary Least Squares (OLS):
  - each observation is an independent draw,
  - Having controlled for age gender etc, patients assumed identical...does not account for heterogeneity across patients
- But decomposition indicates that variation between patients is considerably greater than variation within.....

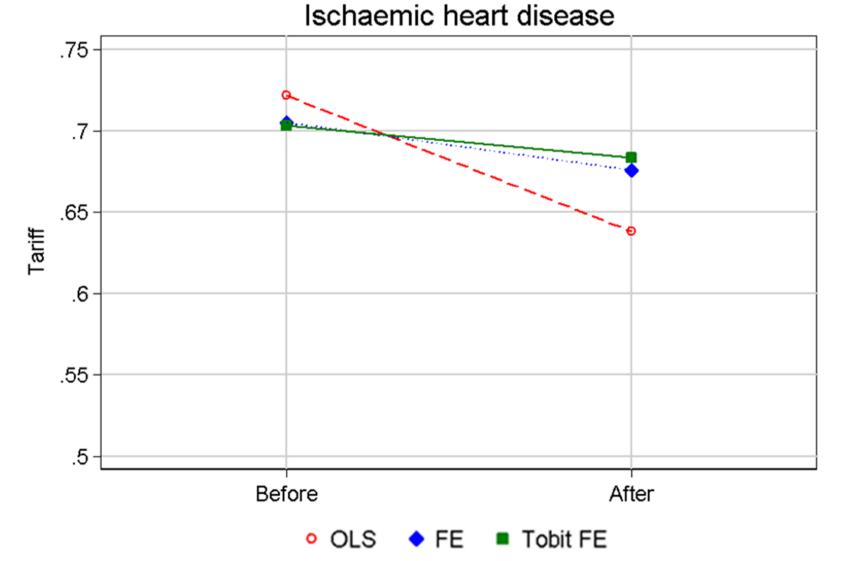
|         | Mean Tariff | Std. Dev. | Variance |
|---------|-------------|-----------|----------|
| Overall | 0.692       | 0.30      | 0.09     |
| Between |             | 0.27      | 0.07     |
| Within  |             | 0.16      | 0.03     |

- That is, considerable heterogeneity. If correlated with events, OLS will be biased. Therefore....
- 2. Fixed Effects (FE):
  - removes time-invariant missing or unobservable variables
  - produces more consistent estimates of the parameters of interest
  - But relies on within variation. Hence may be less efficient, bigger SEs



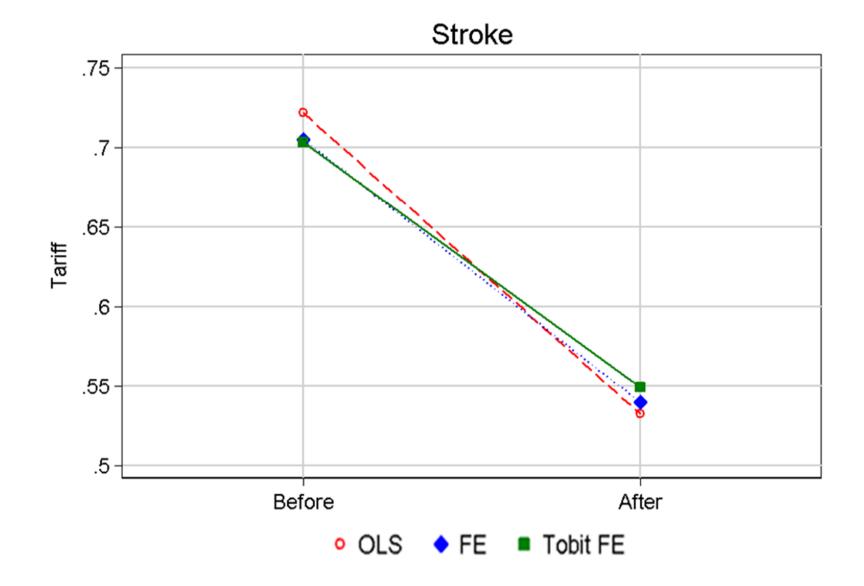

## **Results:**

|                    | 0        | LS        | FE           |           | Tobit FE    |           |  |
|--------------------|----------|-----------|--------------|-----------|-------------|-----------|--|
|                    | Coeff    | Robust SE | Coeff        | Robust SE | Coeff (MFX) | Robust SE |  |
| Constant           | 0.839**  | (0.035)   | 1.774**      | (0.046)   |             |           |  |
| Current age        | -0.002** | (0.001)   | -0.016**     | (0.001)   | -0.012**    | (0.001)   |  |
| Male=1             | 0.081**  | (0.010)   |              |           |             |           |  |
| events             |          |           |              |           |             |           |  |
| MI (year before)   | -0.088*  | (0.036)   | -0.066*      | (0.030)   | -0.036      | (0.020)   |  |
| MI (prior history) | -0.037*  | (0.018)   | 0.008        | (0.024)   | 0.011       | (0.016)   |  |
| IHD                | -0.084** | (0.016)   | -0.029       | (0.022)   | -0.020      | (0.015)   |  |
| Stroke             | -0.189** | (0.029)   | -0.165**     | (0.035)   | -0.111**    | (0.029)   |  |
| Heart Failure      | -0.159** | (0.031)   | -0.101**     | (0.032)   | -0.047*     | (0.022)   |  |
| Amputation         | -0.203** | (0.039)   | -0.172**     | (0.045)   | -0.106**    | (0.035)   |  |
| Blindness in 1 eye | -0.049*  | (0.022)   | 0.031        | (0.027)   | 0.025       | (0.017)   |  |
| Observations       | 11614    |           | Observations | 11614     | 11614       |           |  |
|                    |          |           | Number of    |           |             |           |  |
|                    |          |           | participants | 3380      | 3380        |           |  |
| R-squared          | 0.067    |           | R-squared    | 0.130     | 0.130       |           |  |


\*\* p<0.01, \* p<0.05



#### Predictions for average participant with no other complication




#### Predictions for average participant with no other complication



Control of the second s

#### Predictions for average participant with no other complication





# Summary and Conclusion

- Obtaining quality of life information from trial participants is often valuable:
  - Repeated QoL observations across time provide added information
  - May be able to rely on average QoL/QoL profile differences
  - But may need to use decrements from elsewhere, or calculate them
- Evidence that there is a lot of individual heterogeneity
  - Some evidence that patient specific characteristics including QoL may be correlated with the likelihood of events.
  - Patients who have an event may have a lower QoL beforehand
  - Therefore method of calculating decrements important:
    - Longitudinal data better than cross-sectional
    - OLS may be inadequate work required on better methods, other datasets

