

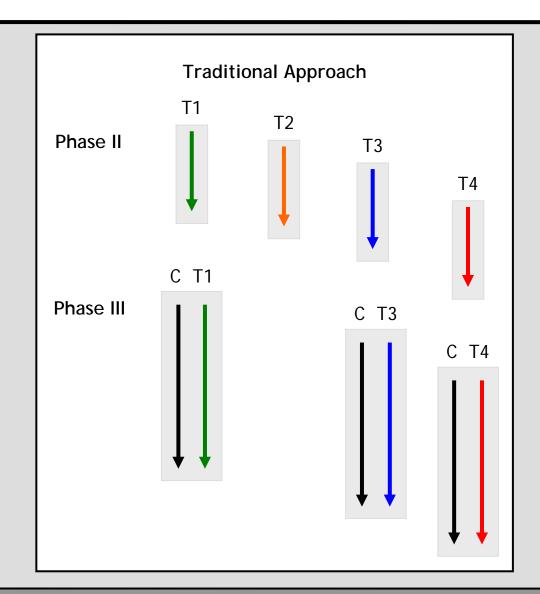
PRACTICAL ISSUES OF IMPLEMENTING A MULTI-ARM MULTI-STAGE TRIAL: NEGOTIATIONS, APPROVALS, INTERACTIONS WITH COMMITTEES AND OPINIONS OF PATIENTS

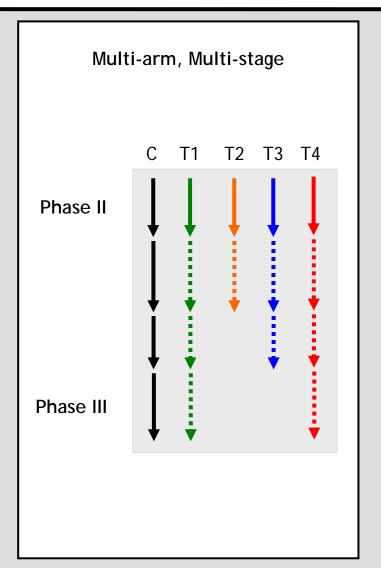
Matthew Sydes

Senior Scientist
MRC Clinical Trials Unit

1. MAMS trials

- 1. MAMS trials
- 2. Application in trial design and conduct
- 3. Issues in analysis
- 4. Conclusions


Multi-Arm Multi-Stage trials



- New is not better than current
- Phase III trials require huge time and effort
 - High chance new treatment not superior (60-70%)
- Need better mechanism to select treatments for phase III trials
- Start by testing many promising treatments
- Start to randomise as quickly as possible
- Potential to discontinue unpromising arms
 - Use intermediate outcome measures
 - Lack-of-benefit testing on intermediate OM

MAMS vs traditional

Advantages of MAMS trials

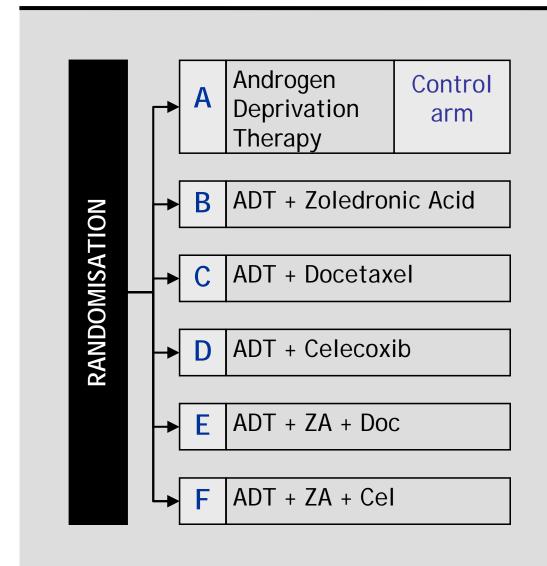
1. Fewer patients2. Less overall time	Randomised from the start Concurrent assessment of agents (not sequential assessment) No delay between phase II and III Fewer applicns: finance, approvals		
3. Increased flexibility	Adapts to intermediate results Focus on more promising arms		
4. Reduced costs	Limited resources for trials Must use fairly and efficiently Provide value		
Statistical issues not considered here (Time-to-event workshop on 14-Feb, London)			

2. Issues in trial design and conduct

- 1. MAMS trials
- 2. Application in trial design and conduct
- 3. Issues in analysis
- 4. Conclusions

Need in prostate cancer

- 900,000 new prostate cancer in 2008
- Many high risk
 - Standard treatment = hormone therapy
 - Median survival: ~ 4 to 5 years
 - Median failure-free survival: ~2 years
- No new therapies improving survival for this group of men for many years
 - Urgent need to improve outcomes for these men


Design rationale

- Many interesting agents
 - Different classes and modes of action
 - Many used in later stages of disease
 - Others new
- No clear reason to choose a particular one
 - Many choices
 - Don't want to choose arbitrarily
 - Want to assess all interesting agents
- Quicker and efficient to use MAMS design
 - Test many

STAMPEDE trial design

Treatment detail

Androgen Deprivation Therapy

:: Standard hormones

:: Given for >3 year

Zoledronic Acid

:: 3rd generation bisphosphonate

:: IV for 2 years every 3 to 4 weeks

Docetaxel

:: Taxane chemotherapy

:: IV for 6 cycles over 18 weeks

Celecoxib

:: Cox-2 inhibitor

:: Oral for 1 year

Groups to convince: industry

Industry partners

Zoledronic acid Novartis

Docetaxel Sanofi-Aventis

CelecoxibPfizer

(Hormones therapy) (as standard care)

Free/discounted drug plus educational grant

- All keen on design because...
 - Efficient design
 - Early "get-out" if agent not so beneficial

Groups to convince: industry

- Engage companies with appropriate agents
 - Obtained three from priority list of agents
 - Some other companies not cooperative
 - Could have taken others but less scientifically interesting
- More companies = more negotiations
 - = More contracts = more time = more delays...?
 - But not unique to this design
 - Also true for many two arm trials

Groups to convince: clinicians

- Medical community
 - Patient group mostly seen by urological surgeons
 - Oncologists need to give some trial treatments
 - Help to work on relationships and streamlining
- Would it appear complex?
 - Discussions with peers in MDT meetings
 - Discussions with patients in clinics
 - Needed broad buy-in from across UK

Groups to convince: clinicians

- Previous multi-arm trials
 - Excellent recruitment to:
 - FOCUS colorectal cancer 5 arms
 - ICON5 ovarian cancer 5 arms
- Amendments
 - Tried to keep trial as simple as possible
 - Further simplifications to follow-up data
- Oncologist and urologists supportive

Groups to convince: clinicians

Survey of sites – summer 2010 (n=29/90)

Site recruitment: 19% better than expected

65% as expected

12% less than expected

Ease of accrual: 17% easier than other trials

54% same as other trials

28% more difficult

Trial workload: 21% less than other trials

58% same as other trials

21% more than other trials

Groups to convince: patients

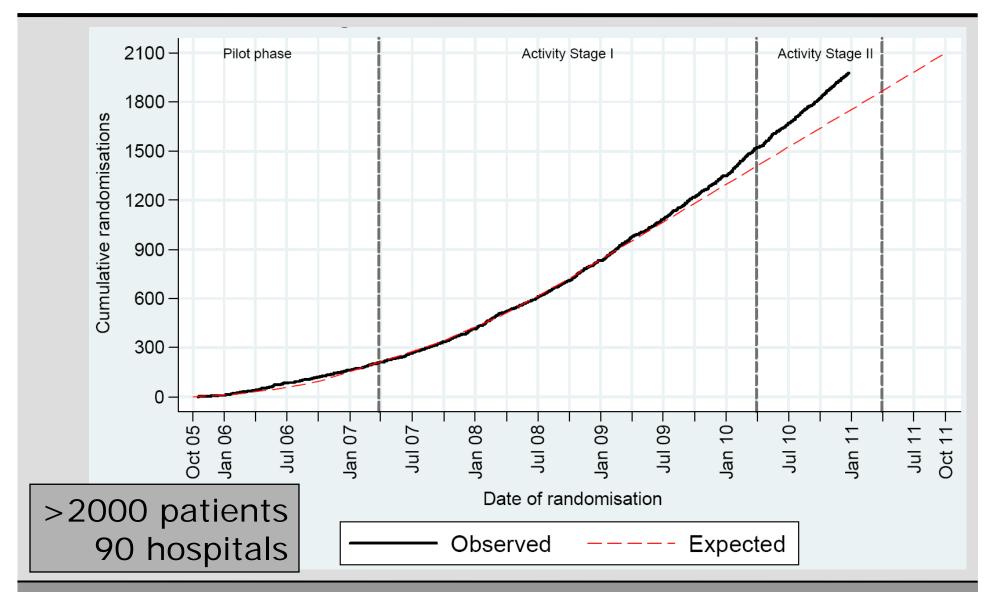
- Involved patient groups throughout
 - Design: One patient involved from initial design meeting
 - Conduct: Two patients on Trial Management Group
- Patients asked:
 - "Why wouldn't you do this type of trial?"
- TMG has very positive opinions
 - Identified through NCRI Prostate CSG
 - Patient involvement good for trial

Groups to convince: patients

- Two-part PIS
 - Developed prior to current NRES guidance
- 1. General information sheet
 - Given prior to randomisation
- 2. Arm-specific information sheets
 - All given prior to randomisation OR
 - Allocation-relevant sheet given afterwards
 - Information need driven by patient choice

Groups to convince: funders

- Funding bodies
 - Cancer Research UK
 - (And industry partners)
- Potential for conservative reviews
 - No prior precedent for such approaches
- Approved
 - After much discussion


Groups to convince: others

- Regulatory approval
 - MHRA
- Ethics committees
 - 2-part PIS
- Hospital governance committees
 - Many!
- Approved
 - UK and Switzerland

Current accrual

Stage	Outcome Measures			
	Primary	Secondary		
Pilot	Safety	Feasibility		
Activity I-III (phase II)	Failure-free survival (PSA-driven)	Overall survival Toxicity (safety) Skeletal-related event		
Efficacy IV (phase III)	Overall survival	Failure-free survival Toxicity (safety) Skeletal-related event Quality of life		

Target: Improvement OS at 4-yr 50% - 60% (HR = 0.75)

Trial plans

Stage	Туре	1º OM	1-s sig	Power	HR _A	Critical HR	Events (Arm A)
ı	Activity	FFS	0.50	95%	0.75	1.00	114
П	Activity	FFS	0.25	95%	0.75	0.92	215
111	Activity	FFS	0.10	95%	0.75	0.89	334
IV	Efficacy	OS	0.025	90%	0.75	-	400

- Target sample size depends on:
 - Traditional factors eg recruitment and event rates
 - MAMS factors eg arms, power, alpha at each stage

3. Issues in analysis

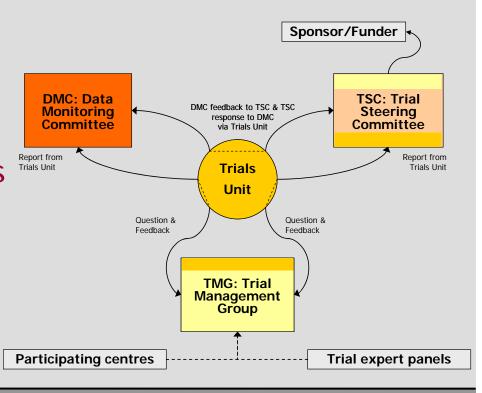
- 1. MAMS trials
- 2. Application in trial design and conduct
- 3. Issues in analysis
- 4. Conclusions

Comparisons

- Pairwise comparisons
 - Each research arm separately against control
- Research arms directly compared only if
 - Both are better than control
 - Accept limited power for comparison

Moving through stages

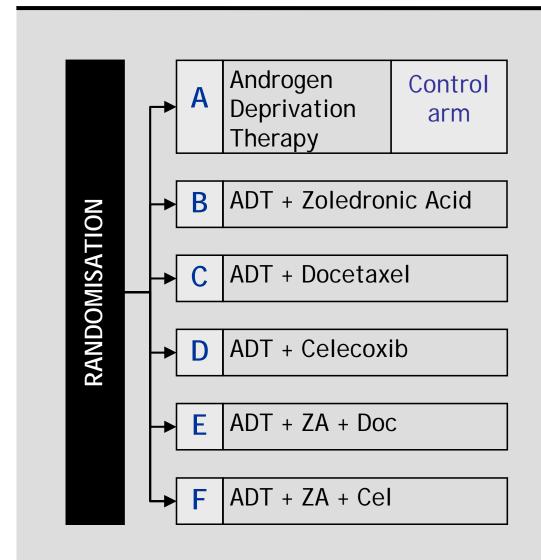
- IDMC review accumulating data
 - Make recommendations to TSC and TMG
- Assess totality of data
 - Activity
 - Guided by critical HR
 - Increasingly stringent
 - Safety
 - External data



24

Moving through stages

- IDMC review interim data
 - Make recommendations to TSC and TMG
- Education & training
 - For all committees
 - Trust in relationships
 - Hypothetical examples


Possible recommendations

- May stop recruitment to arms
 - None, some or all
- May also stop treatment on these arms
 - Depends on data presented
- Follow-up will always continue

Trial design

- Drugs appear in multiple arms
 - ZA in 3 arms
 - Doc in 2 arms
 - Cel in 2 arms

Dropping arms or agents

- If combination arm stopped for lack of sufficient effect
 - Should "single" agent arm stop too?
- If single agent arm stopped for lack of sufficient effect
 - Should combination arm stop too?
- Training and discussion
 - Totality of evidence
 - Treat as if external data from another trial

Intermediate analyses

- Activity Stage I analysis
 - March 2010
 - 1469 patients overall
 - 129 FFS events on control arm
- Outcome
 - IDMC recommended all arms continue accrual
 - TSC agreed to recommendation

When arms continue...

- Intermediate assessments require only modest evidence to continue accrual
 - Primarily consider activity rather than efficacy
 - Emphasized to investigators
- Intermediate results reinforce need to continue randomisation
 - Gain stronger evidence!
 - Researchers not taken out of equipoise by implicit intermediate information

If arms stop...

- Recruitment continues seamlessly
- Randomisation to "stopping arms" turned off
 - Sites notified immediately
 - Sites tell new pts which parts of PIS irrelevant
- Processes agreed by MHRA and REC
 - Fundamental part of trial design
 - Will be notified by amendment
- Tailored information to patients if trt stopped
- PIS, CF and protocol revised asap
 - Quickly but not immediately

Intermediate analyses

- Activity Stage I
 - March 2010
- Activity Stage II
 - March 2011
 - >2000 patients
 - ~220 FFS events on control arm
 - Bar raised for activity (critical HR)

Flexibility and extension

- "Dropping" arms?
 - Adding arms?!
- Design adapts to include further agents
 - Add new research arms during trial
- New agents subjected to same hurdles
 - Apply same design parameters to new arms
 - New arm matures after original research arms
- Only compare to contemporaneous controls

Flexibility and extension

	to 2011	2011 to 2012-3	2012-3 to 2015	2016 to 2017
	A ADT	A ADT	A ADT	(follow-up & analysis)
	B ADT+ZA	B ADT+ZA	(follow-up & analysis)	
C AD	C ADT+Doc	C ADT+Doc	(follow-up & analysis)	
RANDOMISATION	D ADT+Cel	D ADT+Cel	(follow-up & analysis)	
RAND	E ADT+ZA+Doc	E ADT+ZA+Doc	(follow-up & analysis)	
	F ADT+ZA+Cel	F ADT+ZA+Cel	(follow-up & analysis)	
	(not started)	G ADT+New	G ADT+New	(follow-up & analysis)

Flexibility and extension

- Can start recruiting quickly
 - Protocol amendment = simple
 - Scientific review = as amendment
 - Drug & funding = discussions
- Discussions ongoing to do this
 - Advanced discussions with one company
 - Discussions starting with others
 - Scientific review for first new drug = completed
- New agents must be selected for right reasons!

4. Conclusions

- 1. MAMS trials
- 2. Application in trial design and conduct
- 3. Issues in analysis
- 4. Conclusions

Key points – 1

- Many diseases have many potential new treatments
- Most likely to prove no more effective than control

 MAMS trials speed evaluation of new treatments by testing many treatments at the same time and using lack-of-benefit analyses

Key points – 2

- MAMS trials can be implemented successfully
- Engagement from all communities required
 - Clinicians, patients, funders, industry, others
- Flexible design may allow further savings of time and effort in the future

References - STAMPEDE

- Sydes MR, MKB Parmar, ND James et al Issues in applying multi-arm multi-stage (MAMS) methodology to a clinical trial in prostate cancer: the MRC STAMPEDE trial. Trials 2009; 10 (39)
- James ND, Sydes MR, Clarke NW et al STAMPEDE: Systemic Therapy for Advancing or Metastatic Prostate Cancer -- A Multi-Arm Multi-Stage Randomised Controlled Trial. Clin Oncol 2008; 20 (8):577-581
- James ND, Sydes MR, Clarke NW et al Systemic therapy for advancing or metastatic prostate cancer (STAMPEDE): a multi-arm, multistage randomized controlled trial. BJU Int 2009; 103 (4):464-469

References – MAMS trials

Royston P, Parmar MKB, Qian W

Novel Designs for Multi-Arm Clinical Trials with Survival Outcomes, with an Application in Ovarian Cancer. Statistic Med 2003; 22: 2239–2256

- Barthel FMS, Royston P, Parmar MKB
 A menu-driven facility for sample size calculation in multi-arm, multi-stage randomised controlled trials with a survival-time outcome. The Stata Journal 2009; 9 (4): 505-523
- Parmar MKB, Barthel F, Sydes MR et al Speeding up the Evaluation of New Agents in Cancer. J Natl Cancer Inst 2008; 100 (17):1204-1214

Software

- Free software available
 - Design MAMS trials
 - Available from MRC CTU
 - Implemented in Stata

Contact

Matthew Sydes
STAMPEDE Trial Statistician

Senior Scientist Cancer Group MRC Clinical Trials Group 222 Euston Rd London NW1 2DA

Email STAMPEDE@ctu.mrc.ac.uk

Tel +44 (0)20 7670 4798

Mob +44 (0)7825 995251 (work)

Web www.ctu.mrc.ac.uk