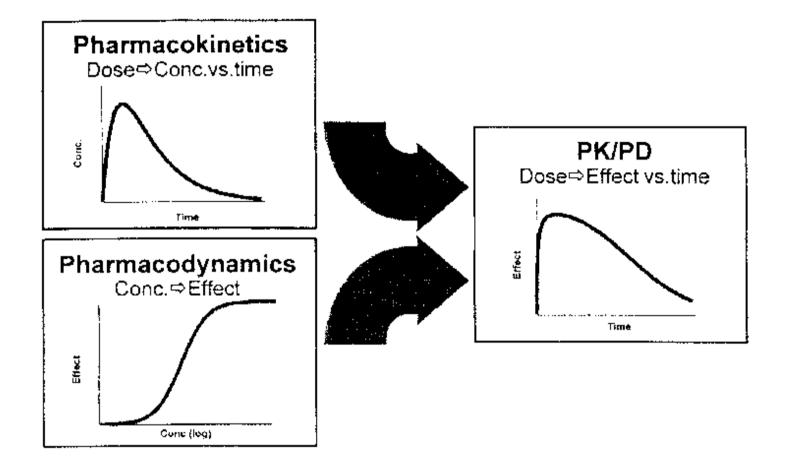
Pharmacological and economic modelling of follicular lymphoma and stroke prophylaxis


North West Hub

Joshua Pink, Dyfrig Hughes, Bangor University Steven Lane, University of Liverpool

Pharmacokinetics & pharmacodynamics

- PK describes the processes of absorption, distribution, metabolism and excretion of drugs.
- Standard mechanistic models link dose with concentration.
- These can be linked to pharmacodynamic models, which link drug concentration and pharmacological effect.
- Combined PKPD models can therefore predict outcome measures from dosing information.

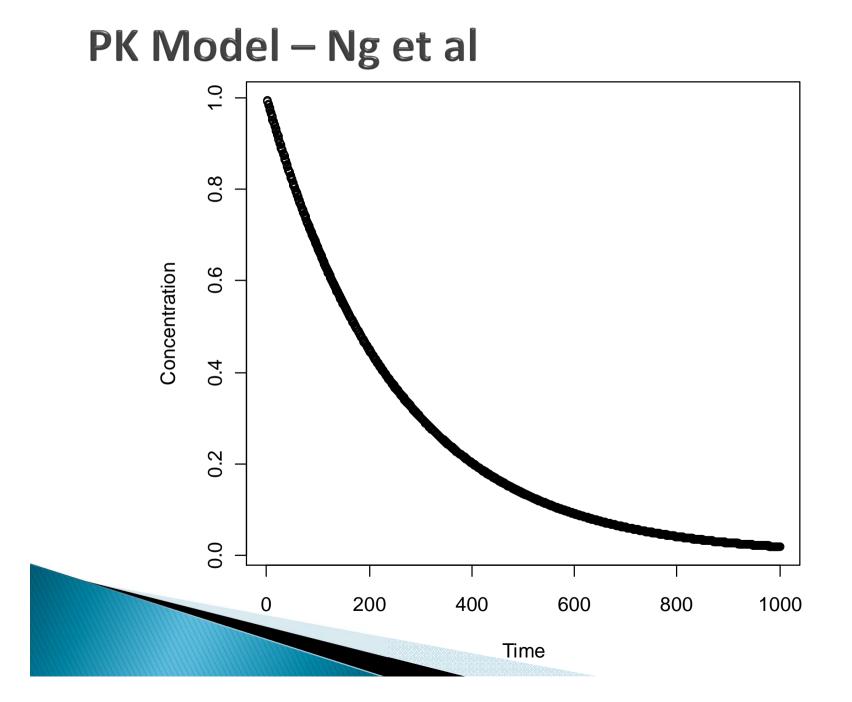
PKPDPE Modelling

- Link together established population PKPD models with health economic models by simulating the outcome of clinical trials.
- £/QALY can thus be reached as an outcome measure.
- Trial design can be made, based on the actual end criteria by which success will ultimately be judged.
- Amenable to Value of Information analysis
 - Informing trial design
 - Identification of subgroups etc.

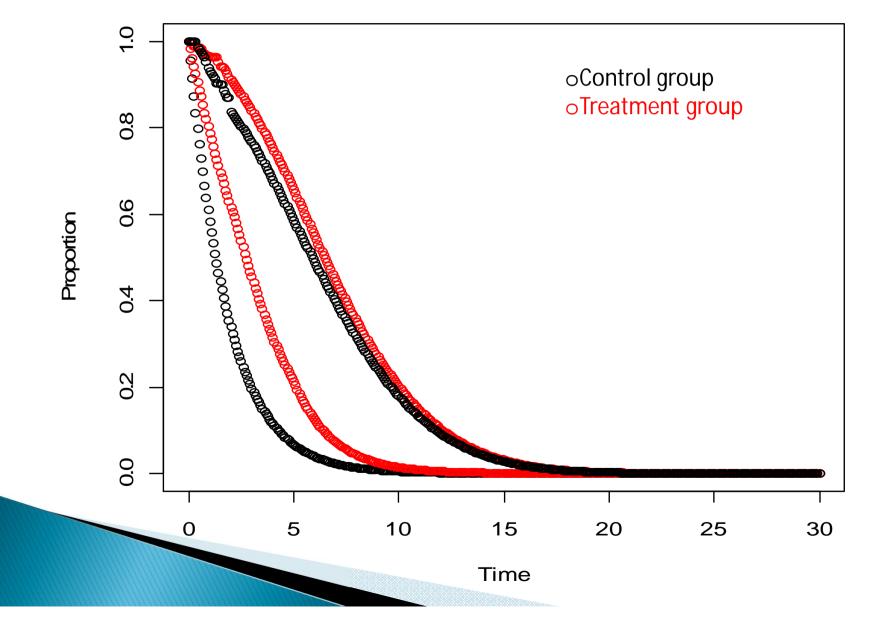
Case Study 1 - Rituximab

- Rituximab is a monoclonal antibody used in the treatment of follicular lymphoma.
- Separate evidence available for its PK, PD (progression-free survival) and cost-effectiveness.
- Aim is to make use of these data to develop a PKPDPE model.
 - Proof of concept exercise.
 - Compare PKPDPE output with industry submission to NICE.

Rituximab Model - overview

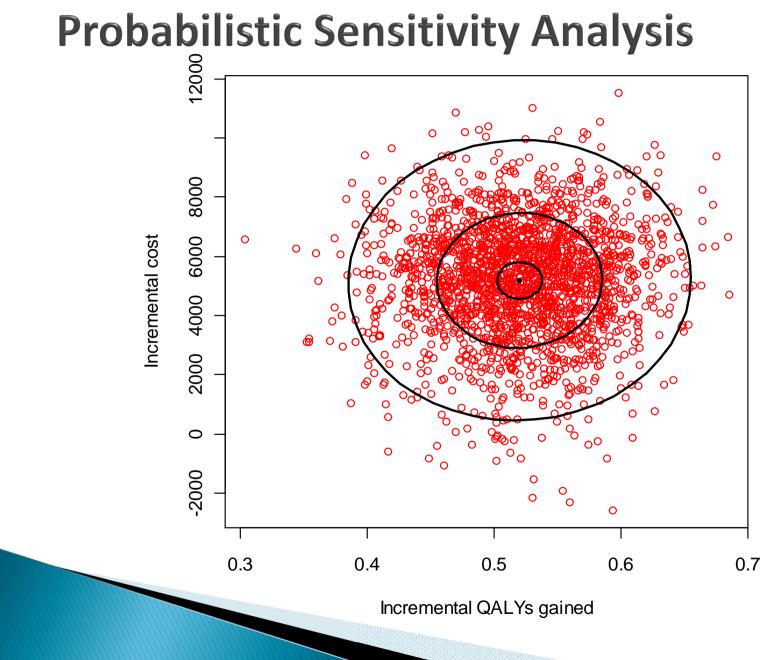

- PK model Ng et al.
 - Two compartment linear model.
 - BSA and gender as significant covariates.
 - Based on 102 patients with RA.
- PD model Ternant et al.

$$Cm(t) = \frac{\int_{t_n}^t C(\tau) d\tau}{t - t_n}$$

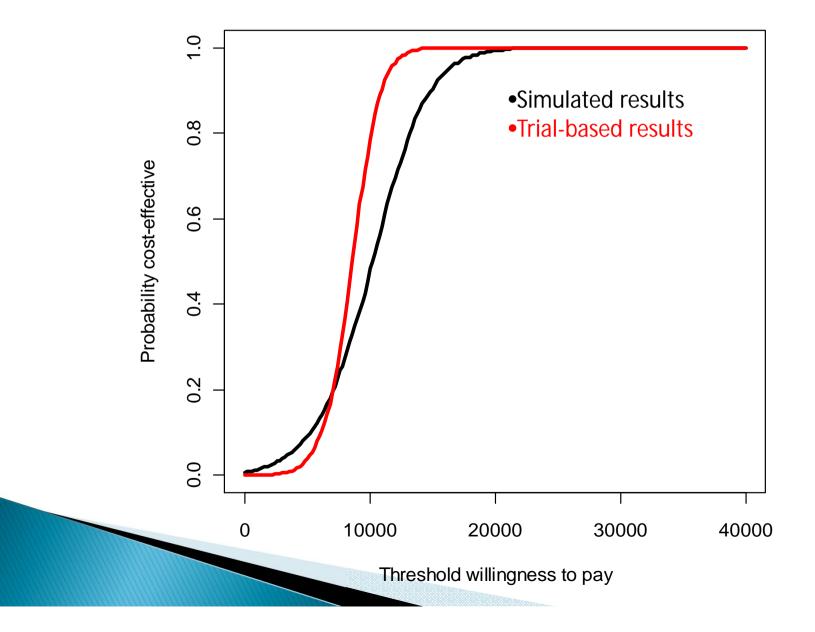

$$PFS(t) = exp \left(-(\lambda_{max}(1 - \frac{Cm^{\gamma}}{Cm_{50}^{\gamma} + Cm^{\gamma}}))t\right)$$

Methods

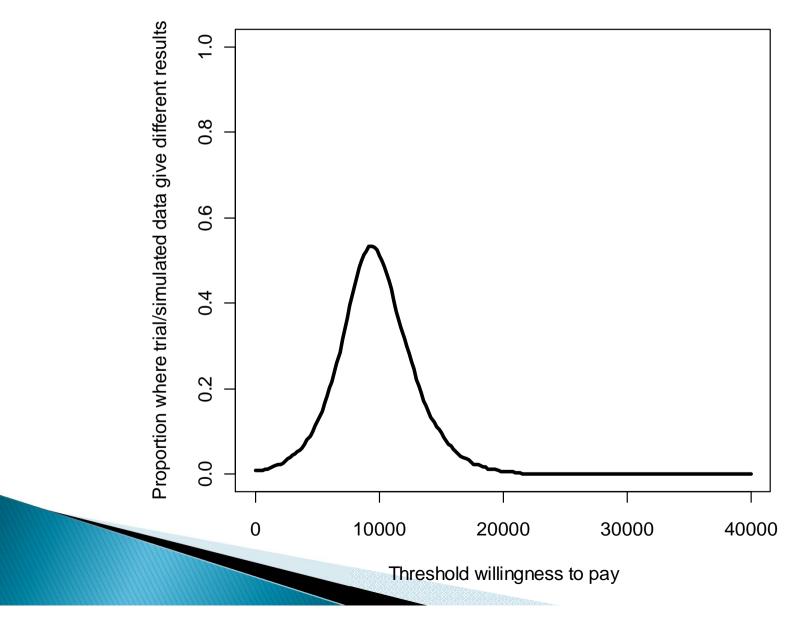
- Overview:
 - Replicate NICE STA economic model, but substitute trial-reported PFS with PFS derived from PKPD simulation.
- Clinical data:
 - Overall survival data/parameters taken from EORTC 20981 trial.
 - Progression free survival simulated from PKPD model.
- Other parameters are all taken from the NICE STA submission:
 - Trial also provides data on incidences/costs of adverse events.
 - Other costs taken from NHS reference costs.
 - Health utility scores come from an Oxford Outcome Group study.



PD Model – Ternant et al



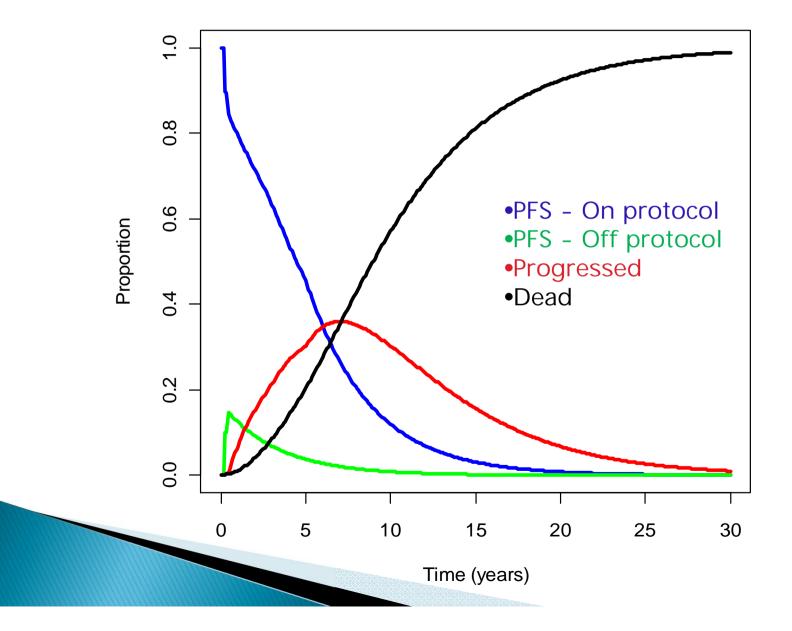
Results


Value	Simulation	Original	95% CR for difference
Median survival – C	5.288	5.214	
Median survival – T	6.267	6.221	
Mean life expectancy – C	5.4026	5.4092	
Mean life expectancy – T	6.5878	6.5998	
Total cost – C	£17,419	£14,722	
Total cost - T	£22,736	£21,608	
Incremental cost	£5,317	£6,886	(-£829,£2,958)
Incremental life years	0.9973	1.0001	
Incremental QALYs	0.5703	0.8919	(0.0027,0.5872)
Incremental cost per QALY	£9,323	£7,721	(-£1,943,£5,955)

Cost-effectiveness Acceptability Curve

Agreement of modelling approaches

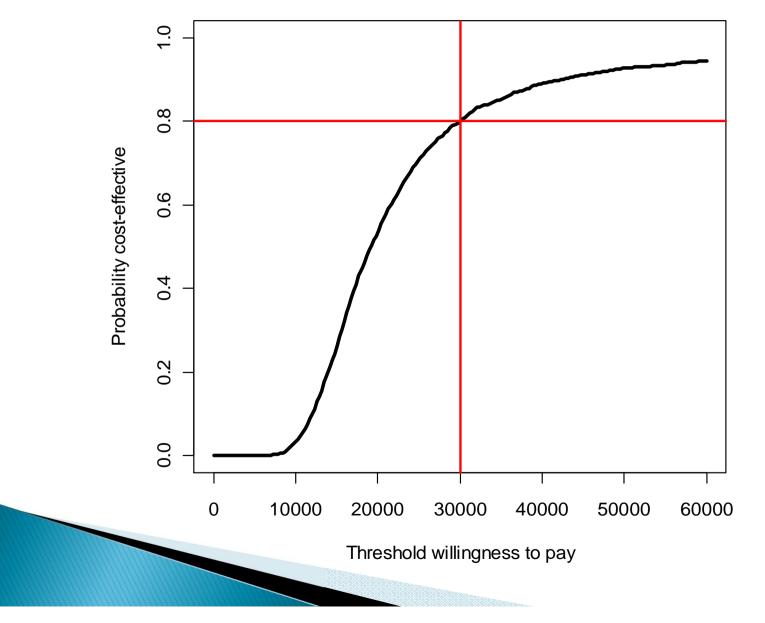
Case study 1b - PACIFICO Trial


- Phase III multicentre trial comparing two different Rituximab-Chemotherapy induction regimens (R-CVP and R-FC) for Follicular Lymphoma in Older Patients.
 Currently recruiting
- Rituximab is used in both the induction and maintenance phases of the treatment.

Methods

- Clinical data:
 - Baseline hazards and response rates for the two chemotherapy regimens taken from a trial comparing FC and CVP.
 - A meta-analysis of trials containing FC or CVP was conducted to obtain information on adverse events and the treatment effect of rituximab.
 - PKPD model provides PFS data, which is combined with allcause mortality data and data on 2nd line chemotherapy.
- Economic data:
 - Extrapolated to a lifetime horizon of analysis.
 - Taken from previously published economic evaluations.

PACIFICO Simulation



Results

Value	R-CVP	R-FC
Median survival	9.008	9.542
Mean life expectancy	10.1577	10.6678
Total cost	£35,833	£41,401
Incremental cost		£5,568
Incremental life years		0.3260
Incremental QALYs		0.2873
Incremental cost per QALY		£19,376

PACIFICO Simulation

Case study 2 - Warfarin

- Warfarin is the most common oral anticoagulant used for patients with atrial fibrillation.
- For optimal anticoagulation, it is necessary to maintain an international normalised ratio (INR) between 2.0 and 3.0.
 - Deviations outside this range increase the risk of both strokes and haemorrhagic events.
- Due to the considerable between patient variability in response to warfarin, frequent monitoring and dose adjustments are necessary.

Warfarin pharmacogenetics

- Much of this variability can be explained by differences in two genes:
 - CYP2C9 Responsible for the metabolic clearance of Swarfarin.
 - VKORC1 Recycles reduced vitamin K
- People with variant alleles are at an increased risk of over-anticoagulation and bleeding.
- Dosing algorithms that take into account these genetic factors may result in better INR control, and hence better clinical outcomes.

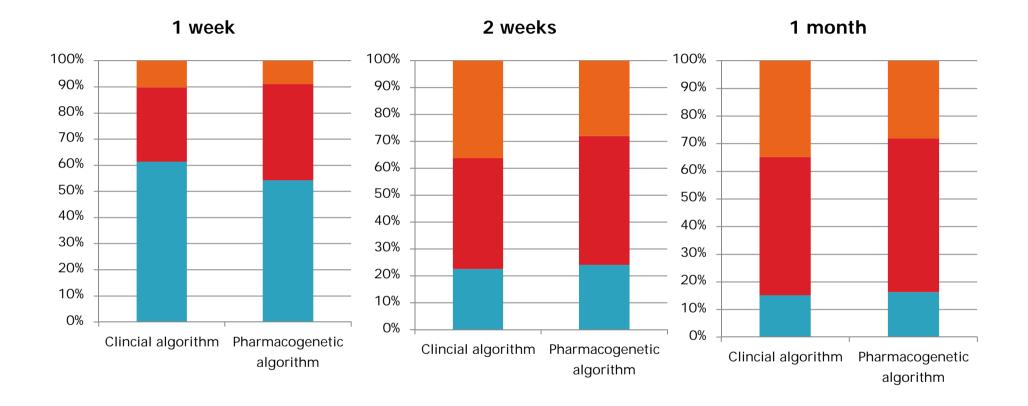
Dosing algorithms

- There are three distinct algorithms that are used in warfarin dosing:
 - Loading phase To achieve correct INR range as quickly as possible without over anti-coagulating.
 - Predicted maintenance dose To predict the most likely dose to maintain a patient in the desired range in the long term.
 - Maintenance phase Further dose adjustments are made based on INR at clinic visits.
- Genetic information can be made use of in all three of these stages.

Simulation structure

- A PKPD model of warfarin is used to predict time below, in and above INR range for a cohort of patients in the six months following initiation.
 - This simulation is re-run for all the different dosing algorithms we wish to compare.
- Data from a systematic review was used to link time in range to various clinical endpoints.
- An economic model was used to extrapolate these results to a lifetime horizon and compare different algorithms in terms of costs and QALYs accrued.

PKPD model


- The model was developed by Hamberg et al and predicts INR measurements based on dose, age and genetic information.
- Patient characteristics based on those of the UK atrial fibrillation population.
- Model allows for explicit incorporation of various forms of non-compliance:
 - Dose time compliance.
 - Missing doses.
 - Treatment discontinuation.


Hamburg et al. Clin Pharmacol Ther. 2010;87:727-34

Algorithm selection - Example

- Loading dose: All patients are given 10mg on days 1 and 2 and 5mg on day 3.
- Predicted maintenance dose: Two IWPC algorithms are used:
 - A clinical algorithm which uses age, height, weight, ethnicity and amiodarone and enzyme inducer use to predict the appropriate maintenance dose.
 - A pharmacogenetic algorithm which uses all these variables and genetic information to predict the maintenance dose.
- Doses adjusted with the Fennerty algorithm.

PKPD results – 3 months

Clinical event model

Update of a systematic review from 2004.

	TE event odds ratio	Bleed odds ratio
INR < 1.5	4.26 (2.76, 6.81)	1.59 (1.01, 2.51)
1.5 <= INR < 2.0	2.19 (1.85, 2.59)	1.21 (0.78, 1.88)
2 <=INR < 3	1	1
3 <= INR < 3.5	1.05 (0.84, 1.31)	2.01 (1.33, 3.04)
3.5 <= INR < 4.0	1.14 (0.93, 1.40)	3.82 (2.57, 5.66)
INR > 4.0	1.26 (0.71, 2.22)	31.76 (22.76, 44.32)

These numbers can then be applied to the data from our PKPD simulations to compare event rates.

Reynolds et al. Chest. 2004;126:1938-45

Results

	Clinical algorithms	Pharmacogenetic algorithm
TE event RR	1	1.000473
Bleed event RR	1	0.940997

- We can now, under the assumption that the clinical algorithm represents standard warfarin care, obtain event rates for both algorithms.
- We use a discrete event simulation to extrapolate these events to a lifetime horizon.
- We can thus obtain an incremental cost and incremental health gain associated with genetic testing.

Pink et al. BMJ. 2011;343

Economic modelling

- Event rates with warfarin standard care are taken from large randomised trials containing warfarin as an arm e.g. RE-LY, ROCKET-AF, ARISTOTLE.
- Health state utilities are taken from the standard utility of a patient with atrial fibrillation.
 - Utility decrements (permanent and temporary) are accrued when clinical events occur.
- Costs in the model are warfarin drug and monitoring costs and the costs of managing events.
 - A cost of £20 was assumed for the genetic test.

Results

	Clinical algorithm	Pharmacogenetic algorithm
QALYs	5.7209	5.7240
Life years	9.7220	9.7222
Costs (£)	5,880	5,921
ICER (£/QALY)		13,226

- In this particular case, the pharmacogenetic algorithm is not cost-effective (ICER > £30,000/QALY).
- A large number of algorithms can be simulated to look for those with the highest probability of being cost-effective.

Discussion - warfarin

- The most promising candidate algorithms can be selected on the criteria of both effectiveness and cost-effectiveness.
- The mechanistic nature of the model enables:
 - Inter-patient variability and protocol deviations to be explicitly explored.
 - Different patient subgroups to be evaluated separately.
 - Value of information analyses to be performed, looking at the potential value of future research in reducing parameter uncertainty.

Discussion - general

- Clinical trial design Simulations can help to inform protocol design in many ways.
 - Mechanism-based drug development.
- Inform stop/go decisions.
 - Early estimates of cost-effectiveness.
- Simulations are also useful later in the evaluation process where trials of all available comparators will never become available.

