

Biomarkers and Treatments Designing Trials

Mahesh KB Parmar MRC Clinical Trials Unit London

(based on a presentation given by Janet Dancey, US NCI)

Oncology Therapeutics Development

- Risk/benefit: Since benefit is survival, high risks (i.e. toxicity) are tolerated
- Most agents provide marginal benefit
 - Randomized trials required to demonstrate survival benefit
 - Surrogates for survival generally remain unclear
- Patient selection for trials (and treatment) should minimize risk and maximize potential benefit

Phase 2 Trials: Considerations

- Goal: estimate level of anti-tumour activity
- Four aspects of phase 2 clinical trial designs:
 - Defining the patient population for evaluation
 - Patient and disease related eligibility criteria
 - Defining the agent/intervention
 - Single agent, combination with active treatment
 - Selecting endpoint(s) of interest
 - Determining a level of activity that supports further development
 - Estimating sample sizes
 - Endpoint and magnitude of effect of interest
 - Level of certainty that the result is "true"
 - alpha and beta

Phase 2 Studies: Patient Population

Patient population that is most likely to tolerate and benefit from the agent

- Disease characteristics:
 - Disease type and extent
 - Prior therapy
 - Biomarkers predictive of sensitivity or resistance
- Patient characteristics:
 - Performance status
 - Adequate organ function
 - Pregnancy
 - Eligibility for special drug administration or procedures for the trial
 - Consent and availability
 - Biomarkers predictive of toxicity, drug sensitivity or resistance
- Assessable for endpoints of the study

- Purpose: Definitively demonstrate improved patient benefit
- Selection considerations:
 - Similar to phase 2
 - Modifications may be made based on greater understanding of
 - safety,
 - activity,
 - interest in ensuring applicability to broader patient population

Phase 3 Studies: Patient Population

- Disease characteristics:
 - Disease type and extent
 - Prior therapy
 - Biomarkers predictive of sensitivity or resistance
- Patient characteristics:
 - Performance status
 - Adequate organ function
 - Pregnancy
 - Eligibility for special drug administration or procedures for the trial
 - Consent and availability
 - Biomarkers predictive of toxicity, drug sensitivity or resistance
- Assessable for endpoints of the study

Why is patient selection in trials of important?

- Targets of newer agents may not be present or relevant within histologically similar tumors.
- Benefit to subgroup of patients may be masked by lack of benefit to the larger group
- Without patient selection, there is greater uncertainty of a successful outcome for a clinical trial or for an individual patient

Why is patient selection in trials important?

- Two Goals:
 - To improve the efficiency of drug development
 - To select the right treatment for the right type of patient

- Size of trial to detect a difference in unselected patients depends on:
 - Magnitude of the effect
 - Proportion of patients with tumors "sensitive" to agent

Effect of Molecular Heterogeneity on Trial Outcome

Betensky et al., J Clin Oncol 20:2495-2499, 2002

- A randomised clinical trial is designed to test the effect of an experimental versus standard therapy on survival
- Assume patients have either genetic subtype 1 or 2
- Assumptions:
 - Patients treated with experimental therapy will live 50% longer if the tumor has genetic subtype 1
 - Historically, median survival is 4 years in all patients
 - genetic subtype 1, survival is 6 years
 - genetic subtype 2, survival is 2 years
 - Two-sided type I error = 0.05, and power = 80%

Clinical Trials

Unit

Adapted, Betensky et al., J Clin Oncol 20:2495-2499, 2002

- <u>Scenario 1</u>: Experimental treatment is ineffective for genetic subtype
 2
 Semple Sizes Required for 80% Dever two sided a 0.05
 - Sample Sizes Required for 80% Power, two-sided $\alpha = 0.05$

True Proportion Subtype1	Scenario 1		
0.0	NA		
0.1	31 209		
0.3	4 259		
0.5	1 693		
0.7	891		
0.9	526		
1.0	412		

Selecting Patients

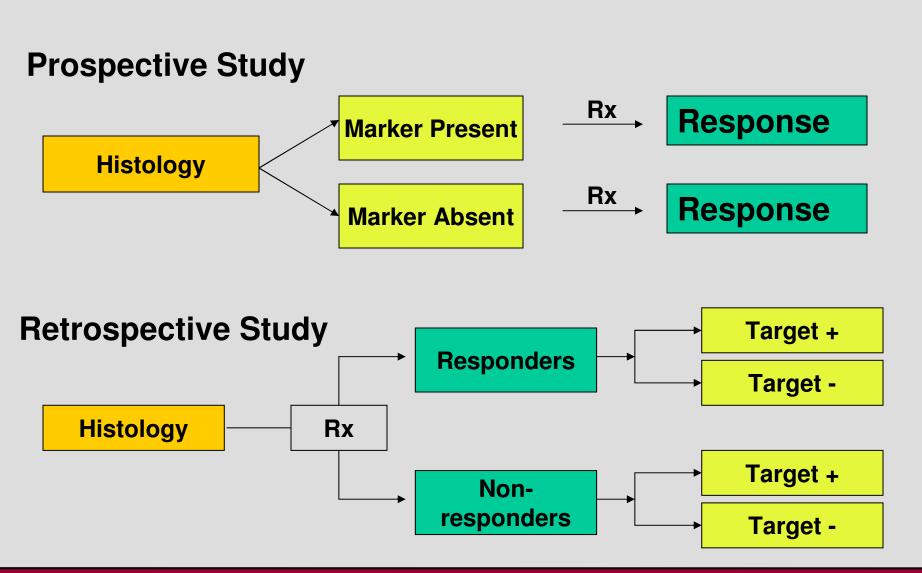
 However, in appropriately selected patients, phase 2 studies demonstrating high response rates to a targeted agent may even lead to early regulatory approval.

Agent	Histology	Target	Result
Trastuzumab	Breast	Y	10-25% RR
Imatinib	GIST	Y	50% + RR
Imatinib	CML-CP	Y	90% RR

 Without appropriate selection of patients even the largest trial can produce 'negative' results

- <u>Traditional</u>: clinical trial enrolls all patients with same histology/stage of cancer
 - Retrospective evaluation of marker/treatment effects
- <u>Targeted or enriched</u>: enrolls only marker+ patients
- <u>Stratified Marker and Treatment Validation:</u> enrolls all patients and treatments evaluated separately within marker +ve and marker -ve patients

Selection of Patients Based on Biomarkers Predictive of Drug Effect: Issues


- Disease factors relate to drug action
 - Target present/relevant
- Disease factors unrelated to target presence/relevance that may alter drug action
 - Drug efflux proteins
 - Metabolic inactivation
 - Redundant pathways
- Host related factors that may alter drug effect
 - Metabolism
 - Toxicity
- Assays/tests are not perfect
 - Bioanalytical issues of the assay
 - Sensitivity, specificity and predictive value

- The Goal: Selection of patients likely to benefit (or probably more realistically elimination of those least likely or unlikely to benefit)
- Considerations:
 - The treatment effect across patient subsets
 - Prevalence of the subset of patients with "sensitive" disease
 - Assay performance i.e sensitivity/specificity/predictive value
- Two strategies:
 - The marker is present at baseline
 - The marker changes early with treatment (will not be addressed in this presentation)
- Prospective or retrospective evaluation?

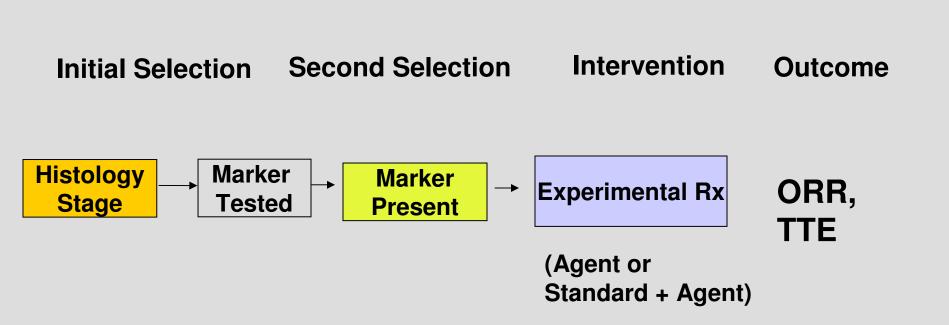
Trials Designs: Prospective and Retrospective Evaluation of Predictive Biomarkers

Mahesh Parmar

Biomarkers to Select Patients: Prospective Evaluation

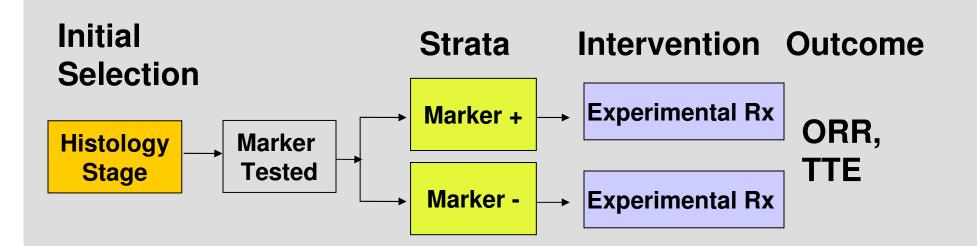
- Advantage
 - Fewest numbers of patients
 - Study design guaranteed to have sufficient power to show treatment effect in marker present group
- Disadvantage
 - Must know marker to select patients
 - Rapid turnaround to determine eligibility

Biomarkers to Select Patients: Retrospective Evaluation


- Advantages
 - Maximize accrual
 - Need not know the right marker
 - Allows refinement of marker/assay while trial ongoing
 - Allows assessment in marker+/- groups
- Disadvantages
 - Risk of insufficient numbers within marker group(s)
 - Prevalence of different marker defined subgroups
 - Collection of samples compromised
 - Incomplete submission, suboptimal handling
 - Results may not be generalizable

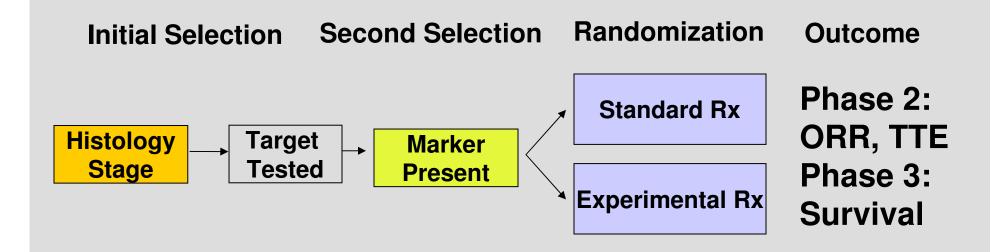
Prospective Clinical Trials To Assess Effects in Biomarker Defined Patient Groups

- Rationale:
 - Treatment benefit is limited to a defined group of patients
- Biomarker issues
 - Marker positive group has to have a relatively large benefit of treatment
 - Marker assessment is robust
 - Reliable, low false positive/negative rates
 - Assay failure rate (inability to assess sample and yield a result) is low
 - Turnaround time is short (delay is clinically acceptable)
 - Marker positive group prevalence is reasonable for screening and accrual
- Design Issues
 - The benefit of treatment has/has not been defined for the unselected group
- Sample Size Considerations:
 - Prevalence of the marker defined group
 - Assay failure rate, sensitivity, specificity, predictive value
 - Magnitude of benefit
 - Frequency of events in marker positive group

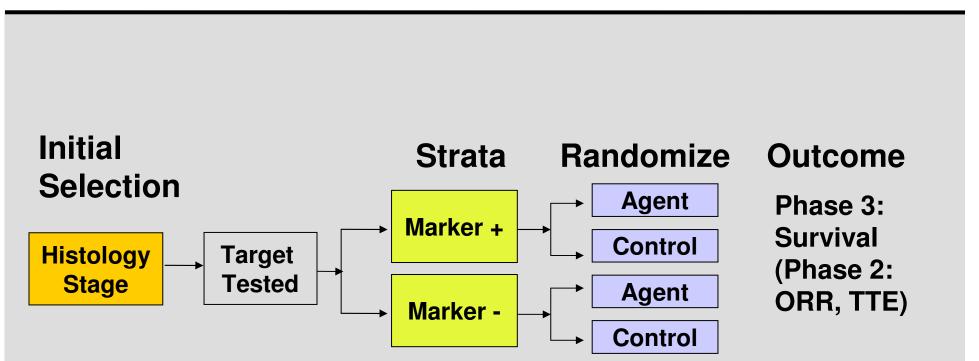

Non-randomised phase 2 Trial – Histologically Defined and Clinical Biomarker Defined Patient Population: Enrichment Design

- Trial designed to assess agent activity in the marker+ group
- Marker assessment
 - Assay failure increases number of patients screened
 - False positives will dilute effect
 - False negatives will increase the number of patients screened
- Cannot tell if agent active in marker negative group
- Outcome of the marker positive group may differ from historical data assessed in unselected patients

Phase 2 Trial – Histologically Defined and Marker Defined Patient Population: Stratified Design



- Trial is designed to assess treatment activity in Marker+ and Marker- groups
- Marker assessment
 - Assay failure increases number of patients screened
 - False positives will dilute effect
 - False negatives will increase the number of patients screened
- Cannot distinguish between prognostic versus predictive effect of marker compared to historical data from unselected patients


Phase 2 or 3 Trial – Histologically and Molecularly Defined Patient Population: Enrichment Design (2)

- Trial designed to assess activity/effects in the marker+ group
- Marker assessment
 - · Assay failure increases number of patients screened
 - False positives will dilute effect
 - False negatives will increase the number of patients screened
- Can determine prognostic versus predictive association of biomarker
- · Cannot assess effect in marker negative group

Phase 3 (or 2) Trial – Histologically and Biomarker Defined Patient Populations (2): Stratified Design

- Trial is designed to assess treatment effects in Marker+ and Marker- groups
- Larger trial may be required, because of marker -ve group
- Marker assessment
 - Assay failure increases number of patients screened
 - False positives will dilute effect
 - False negatives will increase the number of patients screened
- If negative within marker groups, could analyze between treatment groups

Clinical

Trials

Unit

MRC

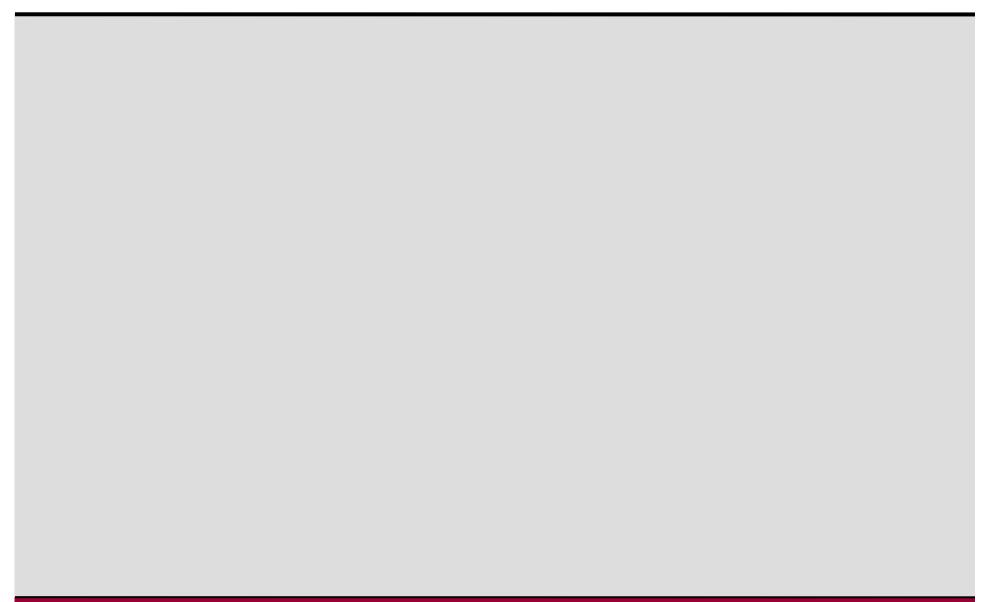
Challenges in Data Analysis & Interpretation

- Limitations of enrichment designs
 - Single-arm
 - Have we identified a subgroup with favorable prognosis (independent of treatment) or a group that preferentially benefits from the new treatment?
 - The biomarker defined subgroup may have a different prognosis from historical outcome data from trials done in an unselected group
 - E.g. ER+, HER2 amplification and EGFR mutations are both prognostic and predictive
 - If the outcome with standard treatment is not well defined and/or the outcome of interest is PFS/OS consider a randomized phase 2 design
 - Randomized
 - Does the new drug benefit *all* patients or only the subgroup?
- Limitations of assays to define biomarker groups
 - Assay failure increases the number of patients screened
 - False positives will dilute effect in marker+ group
 - False negatives will dilute the apparent differences in treatment effect between marker defined groups.
 - Randomized stratified design may be 4x size of a conventional study

- Patient consent
- Difficulties obtaining tissue (advanced/recurrent disease)
 - Biopsy precedes phase 2 study & unavailable
 - Risks of additional biopsy procedure
 - Exposure to prior therapy
- Relevance of original diagnostic specimen (if 2nd line) or primary tumor (if metastatic)
- Standardized collection & preservation

Challenges in Data Analysis & Interpretation of Retrospective Single Arm Studies

- Samples sizes (with available specimens) in single arm study generally too small for definitive marker analyses
- Many endpoints, markers, and subgroups might be examined
- Combining over different studies difficult
 - Different patient populations
 - Different assay methods


- In phase 2, evaluate the effect of agent in marker +/- groups
 - Concurrently or in sequence
 - Based on results, decide whether to design phase 3 study for marker+ group, both groups, or not to select.
 - If patients are not prospectively tested for marker, consider
 - What is the power for subset analyses?
 - How to optimize specimen collection?

Phase 3 Studies with Predictive Markers: 4 Approaches

- <u>Traditional</u>: clinical trial comparing investigational to control treatment for all patients with same histology/stage of cancer.
 - Retrospective evaluation of marker/treatment effects
- <u>Targeted or enriched:</u> randomize only marker+ patients and compare treatments
- <u>Stratified Marker and Treatment Validation</u>: randomize all patients and compare treatments separately within marker +ve and marker -ve patients
- <u>Marker-Based Validation: d</u>esigned to demonstrate that use of marker results in better outcomes than no use of the marker

